Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleX
提交
ca89f2fe
P
PaddleX
项目概览
PaddlePaddle
/
PaddleX
通知
138
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
43
列表
看板
标记
里程碑
合并请求
5
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleX
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
43
Issue
43
列表
看板
标记
里程碑
合并请求
5
合并请求
5
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
ca89f2fe
编写于
7月 09, 2020
作者:
J
Jason
提交者:
GitHub
7月 09, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #194 from SunAhong1993/syf_docs
add jingjing docs and code
上级
f414b4ae
a3465454
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
216 addition
and
13 deletion
+216
-13
docs/data/annotation.md
docs/data/annotation.md
+5
-4
paddlex/command.py
paddlex/command.py
+48
-0
paddlex/tools/base.py
paddlex/tools/base.py
+1
-0
paddlex/tools/convert.py
paddlex/tools/convert.py
+26
-0
paddlex/tools/x2coco.py
paddlex/tools/x2coco.py
+107
-3
paddlex/tools/x2imagenet.py
paddlex/tools/x2imagenet.py
+29
-6
未找到文件。
docs/data/annotation.md
浏览文件 @
ca89f2fe
...
...
@@ -10,7 +10,7 @@ PaddleX支持图像分类、目标检测、实例分割和语义分割四大视
| 标注工具 | 图像分类 | 目标检测 | 实例分割 | 语义分割 | 安装 |
| :--------- | :------- | :------ | :------ | :------- | :----------------------------------------------- |
| Labelme | - | √ | √ | √ | pip install labelme (本地数据标注) |
| 精灵标注 | √ |
√
| √ | √ |
[
官网下载
](
http://www.jinglingbiaozhu.com/
)
(本地数据标注) |
| 精灵标注 | √ |
-
| √ | √ |
[
官网下载
](
http://www.jinglingbiaozhu.com/
)
(本地数据标注) |
| EasyData | √ | √ | √ | √ |
[
Web页面标注
](
https://ai.baidu.com/easydata/
)
(需上传数据进行标注) |
数据标注完成后,参照如下流程,将标注数据转为可用PaddleX模型训练的数据组织格式。
...
...
@@ -23,9 +23,10 @@ PaddleX支持图像分类、目标检测、实例分割和语义分割四大视
> 2. 将所有的标注json文件放在同一个目录下,如`annotations`目录
> 3. 使用如下命令进行转换
```
paddlex --data_conversion --
from
labelme --to PascalVOC --pics ./pics --annotations ./annotations --save_dir ./converted_dataset_dir
paddlex --data_conversion --
source
labelme --to PascalVOC --pics ./pics --annotations ./annotations --save_dir ./converted_dataset_dir
```
> `--
from
`表示数据标注来源,支持`labelme`、`jingling`和`easydata`(分别表示数据来源于LabelMe,精灵标注助手和EasyData)
> `--to`表示数据需要转换成为的格式,支持`PascalVOC`(目标检测),`MSCOCO`(实例分割,也可用于目标检测)和`SEG`(语义分割)
> `--
source
`表示数据标注来源,支持`labelme`、`jingling`和`easydata`(分别表示数据来源于LabelMe,精灵标注助手和EasyData)
> `--to`表示数据需要转换成为的格式,支持`
ImageNet`(图像分类)、`
PascalVOC`(目标检测),`MSCOCO`(实例分割,也可用于目标检测)和`SEG`(语义分割)
> `--pics`指定原图所在的目录路径
> `--annotations`指定标注文件所在的目录路径
> 【备注】由于标注精灵可以标注PascalVOC格式的数据集,所以此处不再支持标注精灵到PascalVOC格式数据集的转换
paddlex/command.py
浏览文件 @
ca89f2fe
...
...
@@ -50,6 +50,36 @@ def arg_parser():
action
=
"store_true"
,
default
=
False
,
help
=
"export onnx model for deployment"
)
parser
.
add_argument
(
"--data_conversion"
,
"-dc"
,
action
=
"store_true"
,
default
=
False
,
help
=
"convert the dataset to the standard format"
)
parser
.
add_argument
(
"--source"
,
"-se"
,
type
=
_text_type
,
default
=
None
,
help
=
"define dataset format before the conversion"
)
parser
.
add_argument
(
"--to"
,
"-to"
,
type
=
_text_type
,
default
=
None
,
help
=
"define dataset format after the conversion"
)
parser
.
add_argument
(
"--pics"
,
"-p"
,
type
=
_text_type
,
default
=
None
,
help
=
"define pictures directory path"
)
parser
.
add_argument
(
"--annotations"
,
"-a"
,
type
=
_text_type
,
default
=
None
,
help
=
"define annotations directory path"
)
parser
.
add_argument
(
"--fixed_input_shape"
,
"-fs"
,
...
...
@@ -105,6 +135,24 @@ def main():
"paddlex --export_inference --model_dir model_path --save_dir infer_model"
)
pdx
.
convertor
.
export_onnx_model
(
model
,
args
.
save_dir
)
if
args
.
data_conversion
:
assert
args
.
source
is
not
None
,
"--source should be defined while converting dataset"
assert
args
.
to
is
not
None
,
"--to should be defined to confirm the taregt dataset format"
assert
args
.
pics
is
not
None
,
"--pics should be defined to confirm the pictures path"
assert
args
.
annotations
is
not
None
,
"--annotations should be defined to confirm the annotations path"
assert
args
.
save_dir
is
not
None
,
"--save_dir should be defined to store taregt dataset"
if
args
.
source
==
'labelme'
and
args
.
to
==
'ImageNet'
:
logging
.
error
(
"The labelme dataset can not convert to the ImageNet dataset."
,
exit
=
False
)
if
args
.
source
==
'jingling'
and
args
.
to
==
'PascalVOC'
:
logging
.
error
(
"The jingling dataset can not convert to the PascalVOC dataset."
,
exit
=
False
)
pdx
.
tools
.
convert
.
dataset_conversion
(
args
.
source
,
args
.
to
,
args
.
pics
,
args
.
annotations
,
args
.
save_dir
)
if
__name__
==
"__main__"
:
...
...
paddlex/tools/base.py
浏览文件 @
ca89f2fe
...
...
@@ -40,4 +40,5 @@ def get_encoding(path):
f
=
open
(
path
,
'rb'
)
data
=
f
.
read
()
file_encoding
=
chardet
.
detect
(
data
).
get
(
'encoding'
)
f
.
close
()
return
file_encoding
\ No newline at end of file
paddlex/tools/convert.py
浏览文件 @
ca89f2fe
...
...
@@ -15,8 +15,10 @@
# limitations under the License.
from
.x2imagenet
import
EasyData2ImageNet
from
.x2imagenet
import
JingLing2ImageNet
from
.x2coco
import
LabelMe2COCO
from
.x2coco
import
EasyData2COCO
from
.x2coco
import
JingLing2COCO
from
.x2voc
import
LabelMe2VOC
from
.x2voc
import
EasyData2VOC
from
.x2seg
import
JingLing2Seg
...
...
@@ -24,10 +26,34 @@ from .x2seg import LabelMe2Seg
from
.x2seg
import
EasyData2Seg
easydata2imagenet
=
EasyData2ImageNet
().
convert
jingling2imagenet
=
JingLing2ImageNet
().
convert
labelme2coco
=
LabelMe2COCO
().
convert
easydata2coco
=
EasyData2COCO
().
convert
jingling2coco
=
JingLing2COCO
().
convert
labelme2voc
=
LabelMe2VOC
().
convert
easydata2voc
=
EasyData2VOC
().
convert
jingling2seg
=
JingLing2Seg
().
convert
labelme2seg
=
LabelMe2Seg
().
convert
easydata2seg
=
EasyData2Seg
().
convert
def
dataset_conversion
(
source
,
to
,
pics
,
anns
,
save_dir
):
if
source
==
'labelme'
and
to
==
'PascalVOC'
:
labelme2voc
(
pics
,
anns
,
save_dir
)
elif
source
==
'labelme'
and
to
==
'MSCOCO'
:
labelme2coco
(
pics
,
anns
,
save_dir
)
elif
source
==
'labelme'
and
to
==
'SEG'
:
labelme2seg
(
pics
,
anns
,
save_dir
)
elif
source
==
'jingling'
and
to
==
'ImageNet'
:
jingling2imagenet
(
pics
,
anns
,
save_dir
)
elif
source
==
'jingling'
and
to
==
'MSCOCO'
:
jingling2coco
(
pics
,
anns
,
save_dir
)
elif
source
==
'jingling'
and
to
==
'SEG'
:
jingling2seg
(
pics
,
anns
,
save_dir
)
elif
source
==
'easydata'
and
to
==
'ImageNet'
:
easydata2imagenet
(
pics
,
anns
,
save_dir
)
elif
source
==
'easydata'
and
to
==
'PascalVOC'
:
easydata2voc
(
pics
,
anns
,
save_dir
)
elif
source
==
'easydata'
and
to
==
'MSCOCO'
:
easydata2coco
(
pics
,
anns
,
save_dir
)
elif
source
==
'easydata'
and
to
==
'SEG'
:
easydata2seg
(
pics
,
anns
,
save_dir
)
\ No newline at end of file
paddlex/tools/x2coco.py
浏览文件 @
ca89f2fe
...
...
@@ -100,7 +100,7 @@ class LabelMe2COCO(X2COCO):
image
[
"height"
]
=
json_info
[
"imageHeight"
]
image
[
"width"
]
=
json_info
[
"imageWidth"
]
image
[
"id"
]
=
image_id
+
1
image
[
"file_name"
]
=
json_info
[
"imagePath"
].
split
(
"/"
)[
-
1
]
image
[
"file_name"
]
=
osp
.
split
(
json_info
[
"imagePath"
]
)[
-
1
]
return
image
def
generate_polygon_anns_field
(
self
,
height
,
width
,
...
...
@@ -144,7 +144,7 @@ class LabelMe2COCO(X2COCO):
img_name_part
=
osp
.
splitext
(
img_file
)[
0
]
json_file
=
osp
.
join
(
json_dir
,
img_name_part
+
".json"
)
if
not
osp
.
exists
(
json_file
):
os
.
remove
(
os
.
remove
(
osp
.
join
(
image_dir
,
img_file
)
))
os
.
remove
(
os
p
.
join
(
image_dir
,
img_file
))
continue
image_id
=
image_id
+
1
with
open
(
json_file
,
mode
=
'r'
,
\
...
...
@@ -216,7 +216,7 @@ class EasyData2COCO(X2COCO):
img_name_part
=
osp
.
splitext
(
img_file
)[
0
]
json_file
=
osp
.
join
(
json_dir
,
img_name_part
+
".json"
)
if
not
osp
.
exists
(
json_file
):
os
.
remove
(
os
.
remove
(
osp
.
join
(
image_dir
,
img_file
)
))
os
.
remove
(
os
p
.
join
(
image_dir
,
img_file
))
continue
image_id
=
image_id
+
1
with
open
(
json_file
,
mode
=
'r'
,
\
...
...
@@ -255,3 +255,107 @@ class EasyData2COCO(X2COCO):
self
.
annotations_list
.
append
(
self
.
generate_polygon_anns_field
(
points
,
segmentation
,
label
,
image_id
,
object_id
,
label_to_num
))
class
JingLing2COCO
(
X2COCO
):
"""将使用EasyData标注的检测或分割数据集转换为COCO数据集。
"""
def
__init__
(
self
):
super
(
JingLing2COCO
,
self
).
__init__
()
def
generate_images_field
(
self
,
json_info
,
image_id
):
image
=
{}
image
[
"height"
]
=
json_info
[
"size"
][
"height"
]
image
[
"width"
]
=
json_info
[
"size"
][
"width"
]
image
[
"id"
]
=
image_id
+
1
image
[
"file_name"
]
=
osp
.
split
(
json_info
[
"path"
])[
-
1
]
return
image
def
generate_polygon_anns_field
(
self
,
height
,
width
,
points
,
label
,
image_id
,
object_id
,
label_to_num
):
annotation
=
{}
annotation
[
"segmentation"
]
=
[
list
(
np
.
asarray
(
points
).
flatten
())]
annotation
[
"iscrowd"
]
=
0
annotation
[
"image_id"
]
=
image_id
+
1
annotation
[
"bbox"
]
=
list
(
map
(
float
,
self
.
get_bbox
(
height
,
width
,
points
)))
annotation
[
"area"
]
=
annotation
[
"bbox"
][
2
]
*
annotation
[
"bbox"
][
3
]
annotation
[
"category_id"
]
=
label_to_num
[
label
]
annotation
[
"id"
]
=
object_id
+
1
return
annotation
def
get_bbox
(
self
,
height
,
width
,
points
):
polygons
=
points
mask
=
np
.
zeros
([
height
,
width
],
dtype
=
np
.
uint8
)
mask
=
PIL
.
Image
.
fromarray
(
mask
)
xy
=
list
(
map
(
tuple
,
polygons
))
PIL
.
ImageDraw
.
Draw
(
mask
).
polygon
(
xy
=
xy
,
outline
=
1
,
fill
=
1
)
mask
=
np
.
array
(
mask
,
dtype
=
bool
)
index
=
np
.
argwhere
(
mask
==
1
)
rows
=
index
[:,
0
]
clos
=
index
[:,
1
]
left_top_r
=
np
.
min
(
rows
)
left_top_c
=
np
.
min
(
clos
)
right_bottom_r
=
np
.
max
(
rows
)
right_bottom_c
=
np
.
max
(
clos
)
return
[
left_top_c
,
left_top_r
,
right_bottom_c
-
left_top_c
,
right_bottom_r
-
left_top_r
]
def
parse_json
(
self
,
img_dir
,
json_dir
):
image_id
=
-
1
object_id
=
-
1
labels_list
=
[]
label_to_num
=
{}
for
img_file
in
os
.
listdir
(
img_dir
):
img_name_part
=
osp
.
splitext
(
img_file
)[
0
]
json_file
=
osp
.
join
(
json_dir
,
img_name_part
+
".json"
)
if
not
osp
.
exists
(
json_file
):
os
.
remove
(
osp
.
join
(
image_dir
,
img_file
))
continue
image_id
=
image_id
+
1
with
open
(
json_file
,
mode
=
'r'
,
\
encoding
=
get_encoding
(
json_file
))
as
j
:
json_info
=
json
.
load
(
j
)
img_info
=
self
.
generate_images_field
(
json_info
,
image_id
)
self
.
images_list
.
append
(
img_info
)
anns_type
=
"bndbox"
for
i
,
obj
in
enumerate
(
json_info
[
"outputs"
][
"object"
]):
if
i
==
0
:
if
"polygon"
in
obj
:
anns_type
=
"polygon"
else
:
if
anns_type
not
in
obj
:
continue
object_id
=
object_id
+
1
label
=
obj
[
"name"
]
if
label
not
in
labels_list
:
self
.
categories_list
.
append
(
\
self
.
generate_categories_field
(
label
,
labels_list
))
labels_list
.
append
(
label
)
label_to_num
[
label
]
=
len
(
labels_list
)
if
anns_type
==
"polygon"
:
points
=
[]
for
j
in
range
(
int
(
len
(
obj
[
"polygon"
])
/
2.0
)):
points
.
append
([
obj
[
"polygon"
][
"x"
+
str
(
j
+
1
)],
obj
[
"polygon"
][
"y"
+
str
(
j
+
1
)]])
self
.
annotations_list
.
append
(
self
.
generate_polygon_anns_field
(
json_info
[
"size"
][
"height"
],
json_info
[
"size"
][
"width"
],
points
,
label
,
image_id
,
object_id
,
label_to_num
))
if
anns_type
==
"bndbox"
:
points
=
[]
points
.
append
([
obj
[
"bndbox"
][
"xmin"
],
obj
[
"bndbox"
][
"ymin"
]])
points
.
append
([
obj
[
"bndbox"
][
"xmax"
],
obj
[
"bndbox"
][
"ymax"
]])
points
.
append
([
obj
[
"bndbox"
][
"xmin"
],
obj
[
"bndbox"
][
"ymax"
]])
points
.
append
([
obj
[
"bndbox"
][
"xmax"
],
obj
[
"bndbox"
][
"ymin"
]])
self
.
annotations_list
.
append
(
self
.
generate_rectangle_anns_field
(
points
,
label
,
image_id
,
object_id
,
label_to_num
))
\ No newline at end of file
paddlex/tools/x2imagenet.py
浏览文件 @
ca89f2fe
...
...
@@ -22,9 +22,8 @@ import shutil
import
numpy
as
np
from
.base
import
MyEncoder
,
is_pic
,
get_encoding
class
EasyData2ImageNet
(
object
):
"""将使用EasyData标注的分类数据集转换为COCO数据集。
"""
class
X2ImageNet
(
object
):
def
__init__
(
self
):
pass
...
...
@@ -46,8 +45,8 @@ class EasyData2ImageNet(object):
continue
with
open
(
json_file
,
mode
=
"r"
,
\
encoding
=
get_encoding
(
json_file
))
as
j
:
json_info
=
json
.
load
(
j
)
for
output
in
json_info
[
'labels'
]
:
json_info
=
self
.
get_json_info
(
j
)
for
output
in
json_info
:
cls_name
=
output
[
'name'
]
new_image_dir
=
osp
.
join
(
dataset_save_dir
,
cls_name
)
if
not
osp
.
exists
(
new_image_dir
):
...
...
@@ -55,4 +54,28 @@ class EasyData2ImageNet(object):
if
is_pic
(
img_name
):
shutil
.
copyfile
(
osp
.
join
(
image_dir
,
img_name
),
osp
.
join
(
new_image_dir
,
img_name
))
\ No newline at end of file
osp
.
join
(
new_image_dir
,
img_name
))
class
EasyData2ImageNet
(
X2ImageNet
):
"""将使用EasyData标注的分类数据集转换为ImageNet数据集。
"""
def
__init__
(
self
):
super
(
EasyData2ImageNet
,
self
).
__init__
()
def
get_json_info
(
self
,
json_file
):
json_info
=
json
.
load
(
json_file
)
json_info
=
json_info
[
'labels'
]
return
json_info
class
JingLing2ImageNet
(
X2ImageNet
):
"""将使用标注精灵标注的分类数据集转换为ImageNet数据集。
"""
def
__init__
(
self
):
super
(
X2ImageNet
,
self
).
__init__
()
def
get_json_info
(
self
,
json_file
):
json_info
=
json
.
load
(
json_file
)
json_info
=
json_info
[
'outputs'
][
'object'
]
return
json_info
\ No newline at end of file
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录