Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleX
提交
baa0036f
P
PaddleX
项目概览
PaddlePaddle
/
PaddleX
通知
138
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
43
列表
看板
标记
里程碑
合并请求
5
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleX
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
43
Issue
43
列表
看板
标记
里程碑
合并请求
5
合并请求
5
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
baa0036f
编写于
5月 19, 2020
作者:
S
sunyanfang01
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
move sklearn
上级
441634a1
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
20 addition
and
12 deletion
+20
-12
paddlex/interpret/core/interpretation_algorithms.py
paddlex/interpret/core/interpretation_algorithms.py
+7
-1
paddlex/interpret/core/lime_base.py
paddlex/interpret/core/lime_base.py
+9
-8
paddlex/interpret/core/normlime_base.py
paddlex/interpret/core/normlime_base.py
+4
-3
未找到文件。
paddlex/interpret/core/interpretation_algorithms.py
浏览文件 @
baa0036f
...
@@ -242,7 +242,13 @@ class NormLIME(object):
...
@@ -242,7 +242,13 @@ class NormLIME(object):
self
.
label_names
=
label_names
self
.
label_names
=
label_names
def
predict_cluster_labels
(
self
,
feature_map
,
segments
):
def
predict_cluster_labels
(
self
,
feature_map
,
segments
):
return
self
.
kmeans_model
.
predict
(
get_feature_for_kmeans
(
feature_map
,
segments
))
X
=
get_feature_for_kmeans
(
feature_map
,
segments
)
try
:
cluster_labels
=
self
.
kmeans_model
.
predict
(
X
)
except
AttributeError
:
from
sklearn.metrics
import
pairwise_distances_argmin_min
cluster_labels
,
_
=
pairwise_distances_argmin_min
(
X
,
self
.
kmeans_model
.
cluster_centers_
)
return
cluster_labels
def
predict_using_normlime_weights
(
self
,
pred_labels
,
predicted_cluster_labels
):
def
predict_using_normlime_weights
(
self
,
pred_labels
,
predicted_cluster_labels
):
# global weights
# global weights
...
...
paddlex/interpret/core/lime_base.py
浏览文件 @
baa0036f
...
@@ -30,17 +30,10 @@ The code in this file (lime_base.py) is modified from https://github.com/marcotc
...
@@ -30,17 +30,10 @@ The code in this file (lime_base.py) is modified from https://github.com/marcotc
import
numpy
as
np
import
numpy
as
np
import
scipy
as
sp
import
scipy
as
sp
import
sklearn
import
sklearn.preprocessing
from
skimage.color
import
gray2rgb
from
sklearn.linear_model
import
Ridge
,
lars_path
from
sklearn.utils
import
check_random_state
import
tqdm
import
tqdm
import
copy
import
copy
from
functools
import
partial
from
functools
import
partial
from
skimage.segmentation
import
quickshift
from
skimage.measure
import
regionprops
class
LimeBase
(
object
):
class
LimeBase
(
object
):
...
@@ -59,6 +52,7 @@ class LimeBase(object):
...
@@ -59,6 +52,7 @@ class LimeBase(object):
generate random numbers. If None, the random state will be
generate random numbers. If None, the random state will be
initialized using the internal numpy seed.
initialized using the internal numpy seed.
"""
"""
from
sklearn.utils
import
check_random_state
self
.
kernel_fn
=
kernel_fn
self
.
kernel_fn
=
kernel_fn
self
.
verbose
=
verbose
self
.
verbose
=
verbose
self
.
random_state
=
check_random_state
(
random_state
)
self
.
random_state
=
check_random_state
(
random_state
)
...
@@ -75,6 +69,7 @@ class LimeBase(object):
...
@@ -75,6 +69,7 @@ class LimeBase(object):
(alphas, coefs), both are arrays corresponding to the
(alphas, coefs), both are arrays corresponding to the
regularization parameter and coefficients, respectively
regularization parameter and coefficients, respectively
"""
"""
from
sklearn.linear_model
import
lars_path
x_vector
=
weighted_data
x_vector
=
weighted_data
alphas
,
_
,
coefs
=
lars_path
(
x_vector
,
alphas
,
_
,
coefs
=
lars_path
(
x_vector
,
weighted_labels
,
weighted_labels
,
...
@@ -106,6 +101,7 @@ class LimeBase(object):
...
@@ -106,6 +101,7 @@ class LimeBase(object):
def
feature_selection
(
self
,
data
,
labels
,
weights
,
num_features
,
method
):
def
feature_selection
(
self
,
data
,
labels
,
weights
,
num_features
,
method
):
"""Selects features for the model. see interpret_instance_with_data to
"""Selects features for the model. see interpret_instance_with_data to
understand the parameters."""
understand the parameters."""
from
sklearn.linear_model
import
Ridge
if
method
==
'none'
:
if
method
==
'none'
:
return
np
.
array
(
range
(
data
.
shape
[
1
]))
return
np
.
array
(
range
(
data
.
shape
[
1
]))
elif
method
==
'forward_selection'
:
elif
method
==
'forward_selection'
:
...
@@ -213,7 +209,7 @@ class LimeBase(object):
...
@@ -213,7 +209,7 @@ class LimeBase(object):
score is the R^2 value of the returned interpretation
score is the R^2 value of the returned interpretation
local_pred is the prediction of the interpretation model on the original instance
local_pred is the prediction of the interpretation model on the original instance
"""
"""
from
sklearn.linear_model
import
Ridge
weights
=
self
.
kernel_fn
(
distances
)
weights
=
self
.
kernel_fn
(
distances
)
labels_column
=
neighborhood_labels
[:,
label
]
labels_column
=
neighborhood_labels
[:,
label
]
used_features
=
self
.
feature_selection
(
neighborhood_data
,
used_features
=
self
.
feature_selection
(
neighborhood_data
,
...
@@ -376,6 +372,7 @@ class LimeImageInterpreter(object):
...
@@ -376,6 +372,7 @@ class LimeImageInterpreter(object):
generate random numbers. If None, the random state will be
generate random numbers. If None, the random state will be
initialized using the internal numpy seed.
initialized using the internal numpy seed.
"""
"""
from
sklearn.utils
import
check_random_state
kernel_width
=
float
(
kernel_width
)
kernel_width
=
float
(
kernel_width
)
if
kernel
is
None
:
if
kernel
is
None
:
...
@@ -422,6 +419,10 @@ class LimeImageInterpreter(object):
...
@@ -422,6 +419,10 @@ class LimeImageInterpreter(object):
An ImageIinterpretation object (see lime_image.py) with the corresponding
An ImageIinterpretation object (see lime_image.py) with the corresponding
interpretations.
interpretations.
"""
"""
import
sklearn
from
skimage.measure
import
regionprops
from
skimage.segmentation
import
quickshift
from
skimage.color
import
gray2rgb
if
len
(
image
.
shape
)
==
2
:
if
len
(
image
.
shape
)
==
2
:
image
=
gray2rgb
(
image
)
image
=
gray2rgb
(
image
)
...
...
paddlex/interpret/core/normlime_base.py
浏览文件 @
baa0036f
...
@@ -17,6 +17,7 @@ import numpy as np
...
@@ -17,6 +17,7 @@ import numpy as np
import
glob
import
glob
from
paddlex.interpret.as_data_reader.readers
import
read_image
from
paddlex.interpret.as_data_reader.readers
import
read_image
import
paddlex.utils.logging
as
logging
from
.
import
lime_base
from
.
import
lime_base
from
._session_preparation
import
compute_features_for_kmeans
,
h_pre_models_kmeans
from
._session_preparation
import
compute_features_for_kmeans
,
h_pre_models_kmeans
...
@@ -113,11 +114,11 @@ def precompute_lime_weights(list_data_, predict_fn, num_samples, batch_size, sav
...
@@ -113,11 +114,11 @@ def precompute_lime_weights(list_data_, predict_fn, num_samples, batch_size, sav
save_path
=
os
.
path
.
join
(
save_dir
,
save_path
)
save_path
=
os
.
path
.
join
(
save_dir
,
save_path
)
if
os
.
path
.
exists
(
save_path
):
if
os
.
path
.
exists
(
save_path
):
print
(
f
'
{
save_path
}
exists, not computing this one.'
)
logging
.
info
(
save_path
+
' exists, not computing this one.'
,
use_color
=
True
)
continue
continue
print
(
'processing'
,
each_data_
if
isinstance
(
each_data_
,
str
)
else
data_index
,
logging
.
info
(
'processing'
+
each_data_
if
isinstance
(
each_data_
,
str
)
else
data_index
+
\
f
'
,
{
data_index
}
/
{
len
(
list_data_
)
}
'
)
f
'
+
{
data_index
}
/
{
len
(
list_data_
)
}
'
,
use_color
=
True
)
image_show
=
read_image
(
each_data_
)
image_show
=
read_image
(
each_data_
)
result
=
predict_fn
(
image_show
)
result
=
predict_fn
(
image_show
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录