未验证 提交 441634a1 编写于 作者: S SunAhong1993 提交者: GitHub

Merge pull request #5 from PaddlePaddle/develop

00
# 数据集转换
## labelme2voc
```python
pdx.tools.labelme2voc(image_dir, json_dir, dataset_save_dir)
```
将LabelMe标注的数据集转换为VOC数据集。
> **参数**
> > * **image_dir** (str): 图像文件存放的路径。
> > * **json_dir** (str): 与每张图像对应的json文件的存放路径。
> > * **dataset_save_dir** (str): 转换后数据集存放路径。
## 其它数据集转换
### easydata2imagenet
```python
pdx.tools.easydata2imagenet(image_dir, json_dir, dataset_save_dir)
```
### easydata2voc
```python
pdx.tools.easydata2voc(image_dir, json_dir, dataset_save_dir)
```
### easydata2coco
```python
pdx.tools.easydata2coco(image_dir, json_dir, dataset_save_dir)
```
### easydata2seg
```python
pdx.tools.easydata2seg(image_dir, json_dir, dataset_save_dir)
```
### labelme2coco
```python
pdx.tools.labelme2coco(image_dir, json_dir, dataset_save_dir)
```
### labelme2seg
```python
pdx.tools.labelme2seg(image_dir, json_dir, dataset_save_dir)
```
### jingling2seg
```python
pdx.tools.jingling2seg(image_dir, json_dir, dataset_save_dir)
```
......@@ -29,3 +29,4 @@ PaddleX目前支持主流的CV数据集格式和 `EasyData <https://ai.baidu.com
classification.md
detection.md
semantic_segmentation.md
dataset_convert.md
# paddlex.deploy
# Predictor部署-paddlex.deploy
使用AnalysisPredictor进行预测部署。
## create_predictor
## Predictor类
```
paddlex.deploy.create_predictor(model_dir, use_gpu=False)
paddlex.deploy.Predictor(model_dir, use_gpu=False, gpu_id=0, use_mkl=False, use_trt=False, use_glog=False, memory_optimize=True)
```
#### Args
> **参数**
* **model_dir**: 训练过程中保存的模型路径
* **use_gpu**: 是否使用GPU进行预测
> > * **model_dir**: 训练过程中保存的模型路径, 注意需要使用导出的inference模型
> > * **use_gpu**: 是否使用GPU进行预测
> > * **gpu_id**: 使用的GPU序列号
> > * **use_mkl**: 是否使用mkldnn加速库
> > * **use_trt**: 是否使用TensorRT预测引擎
> > * **use_glog**: 是否打印中间日志
> > * **memory_optimize**: 是否优化内存使用
#### Returns
> > ### 示例
> >
> > ```
> > import paddlex
> > model = paddlex.deploy.Predictor(model_dir, use_gpu=True)
> > result = model.predict(image_file)
> > ```
* **Predictor**: paddlex.deploy.predictor.Predictor
### predict 接口
> ```
> predict(image, topk=1)
> ```
### 示例
> **参数
```
import paddlex
# 下
Predictor = paddlex.deploy.create_predictor(model_dir, use_gpu=True)
```
## ClassifyPredictor
继承至paddlex.deploy.predictor.Predictor,当model_dir/model.yml里面
```
paddlex.deploy.create_predictor(model_dir, use_gpu=False)
```
#### Args
* **model_dir**: 训练过程中保存的模型路径
* **use_gpu**: 是否使用GPU进行预测
#### Returns
* **Predictor**: paddlex.deploy.predictor.Predictor
### 示例
```
import paddlex
# 下
Predictor = paddlex.deploy.create_predictor(model_dir, use_gpu=True)
```
* **image(str|np.ndarray)**: 待预测的图片路径或np.ndarray,若为后者需注意为BGR格式
* **topk(int)**: 图像分类时使用的参数,表示预测前topk个可能的分类
......@@ -10,3 +10,4 @@ PaddleX API说明文档
slim.md
load_model.md
visualize.md
deploy.md
......@@ -5,7 +5,7 @@ PaddleX提供了一系列模型预测和结果分析的可视化函数。
```
paddlex.det.visualize(image, result, threshold=0.5, save_dir='./')
```
将目标检测/实例分割模型预测得到的Box框和Mask在原图上进行可视化
将目标检测/实例分割模型预测得到的Box框和Mask在原图上进行可视化
### 参数
> * **image** (str): 原图文件路径。
......@@ -77,7 +77,7 @@ pdx.det.draw_pr_curve(gt=gt, pred_bbox=bbox, save_dir='./insect')
```
paddlex.seg.visualize(image, result, weight=0.6, save_dir='./')
```
将语义分割模型预测得到的Mask在原图上进行可视化
将语义分割模型预测得到的Mask在原图上进行可视化
### 参数
> * **image** (str): 原图文件路径。
......@@ -99,11 +99,11 @@ pdx.det.visualize('city.png', result, save_dir='./')
```
paddlex.slim.visualize(model, sensitivities_file)
```
利用此接口,可以分析在不同的`eval_metric_loss`参数下,模型被裁剪的比例情况。可视化结果纵轴为eval_metric_loss参数值,横轴为对应的模型被裁剪的比例
利用此接口,可以分析在不同的`eval_metric_loss`参数下,模型被裁剪的比例情况。可视化结果纵轴为eval_metric_loss参数值,横轴为对应的模型被裁剪的比例
### 参数
>* **model**: 使用PaddleX加载的模型
>* **sensitivities_file**: 模型各参数在验证集上计算得到的参数敏感度信息文件
>* **model** (paddlex.cv.models): 使用PaddleX加载的模型。
>* **sensitivities_file** (str): 模型各参数在验证集上计算得到的参数敏感度信息文件。
### 使用示例
> 点击下载示例中的[模型](https://bj.bcebos.com/paddlex/models/vegetables_mobilenet.tar.gz)和[sensitivities_file](https://bj.bcebos.com/paddlex/slim_prune/mobilenetv2.sensitivities)
......@@ -113,3 +113,28 @@ model = pdx.load_model('vegetables_mobilenet')
pdx.slim.visualize(model, 'mobilenetv2.sensitivities', save_dir='./')
# 可视化结果保存在./sensitivities.png
```
## 可解释性结果可视化
```
paddlex.interpret.visualize(img_file,
model,
dataset=None,
algo='lime',
num_samples=3000,
batch_size=50,
save_dir='./')
```
将模型预测结果的可解释性可视化,目前只支持分类模型。
### 参数
>* **img_file** (str): 预测图像路径。
>* **model** (paddlex.cv.models): paddlex中的模型。
>* **dataset** (paddlex.datasets): 数据集读取器,默认为None。
>* **algo** (str): 可解释性方式,当前可选'lime'和'normlime'。
>* **num_samples** (int): LIME用于学习线性模型的采样数,默认为3000。
>* **batch_size** (int): 预测数据batch大小,默认为50。
>* **save_dir** (str): 可解释性可视化结果(保存为png格式文件)和中间文件存储路径。
### 使用示例
> 对预测可解释性结果可视化的过程可参见[代码](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/interpret/interpret.py)。
# 数据集格式说明
---
## 图像分类ImageNet
图像分类ImageNet数据集包含对应多个标签的图像文件夹、标签文件及图像列表文件。
参考数据文件结构如下:
```
./dataset/ # 数据集根目录
|--labelA # 标签为labelA的图像目录
| |--a1.jpg
| |--...
| └--...
|
|--...
|
|--labelZ # 标签为labelZ的图像目录
| |--z1.jpg
| |--...
| └--...
|
|--train_list.txt # 训练文件列表文件
|
|--val_list.txt # 验证文件列表文件
|
└--labels.txt # 标签列表文件
```
其中,相应的文件名可根据需要自行定义。
`train_list.txt``val_list.txt`文本以空格为分割符分为两列,第一列为图像文件相对于dataset的相对路径,第二列为图像文件对应的标签id(从0开始)。如下所示:
```
labelA/a1.jpg 0
labelZ/z1.jpg 25
...
```
`labels.txt`: 每一行为一个单独的类别,相应的行号即为类别对应的id(行号从0开始),如下所示:
```
labelA
labelB
...
```
[点击这里](https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz),下载蔬菜分类分类数据集。
在PaddleX中,使用`paddlex.cv.datasets.ImageNet`([API说明](../apis/datasets/classification.html#imagenet))加载分类数据集。
## 目标检测VOC
目标检测VOC数据集包含图像文件夹、标注信息文件夹、标签文件及图像列表文件。
参考数据文件结构如下:
```
./dataset/ # 数据集根目录
|--JPEGImages # 图像目录
| |--xxx1.jpg
| |--...
| └--...
|
|--Annotations # 标注信息目录
| |--xxx1.xml
| |--...
| └--...
|
|--train_list.txt # 训练文件列表文件
|
|--val_list.txt # 验证文件列表文件
|
└--labels.txt # 标签列表文件
```
其中,相应的文件名可根据需要自行定义。
`train_list.txt``val_list.txt`文本以空格为分割符分为两列,第一列为图像文件相对于dataset的相对路径,第二列为标注文件相对于dataset的相对路径。如下所示:
```
JPEGImages/xxx1.jpg Annotations/xxx1.xml
JPEGImages/xxx2.jpg Annotations/xxx2.xml
...
```
`labels.txt`: 每一行为一个单独的类别,相应的行号即为类别对应的id(行号从0开始),如下所示:
```
labelA
labelB
...
```
[点击这里](https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz),下载昆虫检测数据集。
在PaddleX中,使用`paddlex.cv.datasets.VOCDetection`([API说明](../apis/datasets/detection.html#vocdetection))加载目标检测VOC数据集。
## 目标检测和实例分割COCO
目标检测和实例分割COCO数据集包含图像文件夹及图像标注信息文件。
参考数据文件结构如下:
```
./dataset/ # 数据集根目录
|--JPEGImages # 图像目录
| |--xxx1.jpg
| |--...
| └--...
|
|--train.json # 训练相关信息文件
|
└--val.json # 验证相关信息文件
```
其中,相应的文件名可根据需要自行定义。
`train.json``val.json`存储与标注信息、图像文件相关的信息。如下所示:
```
{
"annotations": [
{
"iscrowd": 0,
"category_id": 1,
"id": 1,
"area": 33672.0,
"image_id": 1,
"bbox": [232, 32, 138, 244],
"segmentation": [[32, 168, 365, 117, ...]]
},
...
],
"images": [
{
"file_name": "xxx1.jpg",
"height": 512,
"id": 267,
"width": 612
},
...
]
"categories": [
{
"name": "labelA",
"id": 1,
"supercategory": "component"
}
]
}
```
其中,每个字段的含义如下所示:
| 域名 | 字段名 | 含义 | 数据类型 | 备注 |
|:-----|:--------|:------------|------|:-----|
| annotations | id | 标注信息id | int | 从1开始 |
| annotations | iscrowd | 标注框是否为一组对象 | int | 只有0、1两种取值 |
| annotations | category_id | 标注框类别id | int | |
| annotations | area | 标注框的面积 | float | |
| annotations | image_id | 当前标注信息所在图像的id | int | |
| annotations | bbox | 标注框坐标 | list | 长度为4,分别代表x,y,w,h |
| annotations | segmentation | 标注区域坐标 | list | list中有至少1个list,每个list由每个小区域坐标点的横纵坐标(x,y)组成 |
| images | id | 图像id | int | 从1开始 |
| images | file_name | 图像文件名 | str | |
| images | height | 图像高度 | int | |
| images | width | 图像宽度 | int | |
| categories | id | 类别id | int | 从1开始 |
| categories | name | 类别标签名 | str | |
| categories | supercategory | 类别父类的标签名 | str | |
[点击这里](https://bj.bcebos.com/paddlex/datasets/garbage_ins_det.tar.gz),下载垃圾实例分割数据集。
在PaddleX中,使用`paddlex.cv.datasets.COCODetection`([API说明](../apis/datasets/detection.html#cocodetection))加载COCO格式数据集。
## 语义分割数据
语义分割数据集包含原图、标注图及相应的文件列表文件。
参考数据文件结构如下:
```
./dataset/ # 数据集根目录
|--images # 原图目录
| |--xxx1.png
| |--...
| └--...
|
|--annotations # 标注图目录
| |--xxx1.png
| |--...
| └--...
|
|--train_list.txt # 训练文件列表文件
|
|--val_list.txt # 验证文件列表文件
|
└--labels.txt # 标签列表
```
其中,相应的文件名可根据需要自行定义。
`train_list.txt``val_list.txt`文本以空格为分割符分为两列,第一列为图像文件相对于dataset的相对路径,第二列为标注图像文件相对于dataset的相对路径。如下所示:
```
images/xxx1.png annotations/xxx1.png
images/xxx2.png annotations/xxx2.png
...
```
`labels.txt`: 每一行为一个单独的类别,相应的行号即为类别对应的id(行号从0开始),如下所示:
```
background
labelA
labelB
...
```
标注图像为单通道图像,像素值即为对应的类别,像素标注类别需要从0开始递增(一般第一个类别为`background`),
例如0,1,2,3表示有4种类别,标注类别最多为256类。其中可以指定特定的像素值用于表示该值的像素不参与训练和评估(默认为255)。
[点击这里](https://bj.bcebos.com/paddlex/datasets/optic_disc_seg.tar.gz),下载视盘语义分割数据集。
在PaddleX中,使用`paddlex.cv.datasets.SegReader`([API说明](../apis/datasets/semantic_segmentation.html#segdataset))加载语义分割数据集。
## 图像分类EasyDataCls
图像分类EasyDataCls数据集包含存放图像和json文件的文件夹、标签文件及图像列表文件。
参考数据文件结构如下:
```
./dataset/ # 数据集根目录
|--easydata # 存放图像和json文件的文件夹
| |--0001.jpg
| |--0001.json
| |--0002.jpg
| |--0002.json
| └--...
|
|--train_list.txt # 训练文件列表文件
|
|--val_list.txt # 验证文件列表文件
|
└--labels.txt # 标签列表文件
```
其中,图像文件名应与json文件名一一对应。
每个json文件存储于`labels`相关的信息。如下所示:
```
{"labels": [{"name": "labelA"}]}
```
其中,`name`字段代表对应图像的类别。
`train_list.txt``val_list.txt`文本以空格为分割符分为两列,第一列为图像文件相对于dataset的相对路径,第二列为json文件相对于dataset的相对路径。如下所示:
```
easydata/0001.jpg easydata/0001.json
easydata/0002.jpg easydata/0002.json
...
```
`labels.txt`: 每一行为一个单独的类别,相应的行号即为类别对应的id(行号从0开始),如下所示:
```
labelA
labelB
...
```
[点击这里](https://ai.baidu.com/easydata/),可以标注图像分类EasyDataCls数据集。
在PaddleX中,使用`paddlex.cv.datasets.EasyDataCls`([API说明](../apis/datasets/classification.html#easydatacls))加载分类数据集。
## 目标检测和实例分割EasyDataDet
目标检测和实例分割EasyDataDet数据集包含存放图像和json文件的文件夹、标签文件及图像列表文件。
参考数据文件结构如下:
```
./dataset/ # 数据集根目录ß
|--easydata # 存放图像和json文件的文件夹
| |--0001.jpg
| |--0001.json
| |--0002.jpg
| |--0002.json
| └--...
|
|--train_list.txt # 训练文件列表文件
|
|--val_list.txt # 验证文件列表文件
|
└--labels.txt # 标签列表文件
```
其中,图像文件名应与json文件名一一对应。
每个json文件存储于`labels`相关的信息。如下所示:
```
"labels": [{"y1": 18, "x2": 883, "x1": 371, "y2": 404, "name": "labelA",
"mask": "kVfc0`0Zg0<F7J7I5L5K4L4L4L3N3L3N3L3N2N3M2N2N2N2N2N2N1O2N2O1N2N1O2O1N101N1O2O1N101N10001N101N10001N10001O0O10001O000O100000001O0000000000000000000000O1000001O00000O101O000O101O0O101O0O2O0O101O0O2O0O2N2O0O2O0O2N2O1N1O2N2N2O1N2N2N2N2N2N2M3N3M2M4M2M4M3L4L4L4K6K5J7H9E\\iY1"},
{"y1": 314, "x2": 666, "x1": 227, "y2": 676, "name": "labelB",
"mask": "mdQ8g0Tg0:G8I6K5J5L4L4L4L4M2M4M2M4M2N2N2N3L3N2N2N2N2O1N1O2N2N2O1N1O2N2O0O2O1N1O2O0O2O0O2O001N100O2O000O2O000O2O00000O2O000000001N100000000000000000000000000000000001O0O100000001O0O10001N10001O0O101N10001N101N101N101N101N2O0O2N2O0O2N2N2O0O2N2N2N2N2N2N2N2N2N3L3N2N3L3N3L4M2M4L4L5J5L5J7H8H;BUcd<"},
...]}
```
其中,list中的每个元素代表一个标注信息,标注信息中字段的含义如下所示:
| 字段名 | 含义 | 数据类型 | 备注 |
|:--------|:------------|------|:-----|
| x1 | 标注框左下角横坐标 | int | |
| y1 | 标注框左下角纵坐标 | int | |
| x2 | 标注框右上角横坐标 | int | |
| y2 | 标注框右上角纵坐标 | int | |
| name | 标注框中物体类标 | str | |
| mask | 分割区域布尔型numpy编码后的字符串 | str | 该字段可以不存在,当不存在时只能进行目标检测 |
`train_list.txt``val_list.txt`文本以空格为分割符分为两列,第一列为图像文件相对于dataset的相对路径,第二列为json文件相对于dataset的相对路径。如下所示:
```
easydata/0001.jpg easydata/0001.json
easydata/0002.jpg easydata/0002.json
...
```
`labels.txt`: 每一行为一个单独的类别,相应的行号即为类别对应的id(行号从0开始),如下所示:
```
labelA
labelB
...
```
[点击这里](https://ai.baidu.com/easydata/),可以标注图像分类EasyDataDet数据集。
在PaddleX中,使用`paddlex.cv.datasets.EasyDataDet`([API说明](../apis/datasets/detection.html#easydatadet))加载分类数据集。
## 语义分割EasyDataSeg
语义分割EasyDataSeg数据集包含存放图像和json文件的文件夹、标签文件及图像列表文件。
参考数据文件结构如下:
```
./dataset/ # 数据集根目录ß
|--easydata # 存放图像和json文件的文件夹
| |--0001.jpg
| |--0001.json
| |--0002.jpg
| |--0002.json
| └--...
|
|--train_list.txt # 训练文件列表文件
|
|--val_list.txt # 验证文件列表文件
|
└--labels.txt # 标签列表文件
```
其中,图像文件名应与json文件名一一对应。
每个json文件存储于`labels`相关的信息。如下所示:
```
"labels": [{"y1": 18, "x2": 883, "x1": 371, "y2": 404, "name": "labelA",
"mask": "kVfc0`0Zg0<F7J7I5L5K4L4L4L3N3L3N3L3N2N3M2N2N2N2N2N2N1O2N2O1N2N1O2O1N101N1O2O1N101N10001N101N10001N10001O0O10001O000O100000001O0000000000000000000000O1000001O00000O101O000O101O0O101O0O2O0O101O0O2O0O2N2O0O2O0O2N2O1N1O2N2N2O1N2N2N2N2N2N2M3N3M2M4M2M4M3L4L4L4K6K5J7H9E\\iY1"},
{"y1": 314, "x2": 666, "x1": 227, "y2": 676, "name": "labelB",
"mask": "mdQ8g0Tg0:G8I6K5J5L4L4L4L4M2M4M2M4M2N2N2N3L3N2N2N2N2O1N1O2N2N2O1N1O2N2O0O2O1N1O2O0O2O0O2O001N100O2O000O2O000O2O00000O2O000000001N100000000000000000000000000000000001O0O100000001O0O10001N10001O0O101N10001N101N101N101N101N2O0O2N2O0O2N2N2O0O2N2N2N2N2N2N2N2N2N3L3N2N3L3N3L4M2M4L4L5J5L5J7H8H;BUcd<"},
...]}
```
其中,list中的每个元素代表一个标注信息,标注信息中字段的含义如下所示:
| 字段名 | 含义 | 数据类型 | 备注 |
|:--------|:------------|------|:-----|
| x1 | 标注框左下角横坐标 | int | |
| y1 | 标注框左下角纵坐标 | int | |
| x2 | 标注框右上角横坐标 | int | |
| y2 | 标注框右上角纵坐标 | int | |
| name | 标注框中物体类标 | str | |
| mask | 分割区域布尔型numpy编码后的字符串 | str | 该字段必须存在 |
`train_list.txt``val_list.txt`文本以空格为分割符分为两列,第一列为图像文件相对于dataset的相对路径,第二列为json文件相对于dataset的相对路径。如下所示:
```
easydata/0001.jpg easydata/0001.json
easydata/0002.jpg easydata/0002.json
...
```
`labels.txt`: 每一行为一个单独的类别,相应的行号即为类别对应的id(行号从0开始),如下所示:
```
labelA
labelB
...
```
[点击这里](https://ai.baidu.com/easydata/),可以标注图像分类EasyDataSeg数据集。
在PaddleX中,使用`paddlex.cv.datasets.EasyDataSeg`([API说明](../apis/datasets/semantic_segmentation.html#easydataseg))加载分类数据集。
# 数据集转换
当前PaddleX GUI支持ImageNet格式的图像分类数据集、VOC格式的目标检测数据集、COCO格式的实例分割数据集、Seg格式的语义分割的数据集,当使用LabelMe、EasyData、标注精灵这3个工具标注数据时,PaddleX提供了相应接口可将数据转换成与PaddleX GUI想适配的数据集,使用方式如下所示:
```python
import paddlex as pdx
# 该接口实现LabelMe数据集到VOC数据集的转换。
# image_dir为图像文件存放的路径。
# json_dir为与每张图像对应的json文件的存放路径。
# dataset_save_dir为转换后数据集存放路径。
pdx.tools.labelme2voc(image_dir='labelme_imgs',
json_dir='labelme_jsons',
dataset_save_dir='voc_dataset')
```
可替换labelme2voc实现不同数据集间的转换,目前提供的转换接口如下:
| 接口 | 转换关系 |
| :-------- | :------- |
| labelme2voc | LabelMe数据集转换为VOC数据集 |
| labelme2coco | LabelMe数据集转换为COCO数据集 |
| labelme2seg | LabelMe数据集转换为Seg数据集 |
| easydata2imagenet | EasyData数据集转换为ImageNet数据集 |
| easydata2voc | EasyData数据集转换为VOC数据集 |
| easydata2coco | EasyData数据集转换为COCO数据集 |
| easydata2seg | EasyData数据集转换为Seg数据集 |
| jingling2seg | 标注精灵数据集转换为Seg数据集 |
\ No newline at end of file
......@@ -8,6 +8,9 @@
model_zoo.md
metrics.md
how_to_convert_dataset.md
datasets.md
* PaddleX版本: v0.1.7
* 项目官网: http://www.paddlepaddle.org.cn/paddle/paddlex
......
# 数据集格式说明
---
## 图像分类ImageNet
图像分类ImageNet数据集包含对应多个标签的图像文件夹、标签文件及图像列表文件。
参考数据文件结构如下:
```
./dataset/ # 数据集根目录
|--labelA # 标签为labelA的图像目录
| |--a1.jpg
| |--...
| └--...
|
|--...
|
|--labelZ # 标签为labelZ的图像目录
| |--z1.jpg
| |--...
| └--...
|
|--train_list.txt # 训练文件列表文件
|
|--val_list.txt # 验证文件列表文件
|
└--labels.txt # 标签列表文件
```
其中,相应的文件名可根据需要自行定义。
`train_list.txt``val_list.txt`文本以空格为分割符分为两列,第一列为图像文件相对于dataset的相对路径,第二列为图像文件对应的标签id(从0开始)。如下所示:
```
labelA/a1.jpg 0
labelZ/z1.jpg 25
...
```
`labels.txt`: 每一行为一个单独的类别,相应的行号即为类别对应的id(行号从0开始),如下所示:
```
labelA
labelB
...
```
[点击这里](https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz),下载蔬菜分类分类数据集
在PaddleX中,使用`paddlex.cv.datasets.ImageNet`([API说明](./apis/datasets.html#imagenet))加载分类数据集
## 目标检测VOC
目标检测VOC数据集包含图像文件夹、标注信息文件夹、标签文件及图像列表文件。
参考数据文件结构如下:
```
./dataset/ # 数据集根目录
|--JPEGImages # 图像目录
| |--xxx1.jpg
| |--...
| └--...
|
|--Annotations # 标注信息目录
| |--xxx1.xml
| |--...
| └--...
|
|--train_list.txt # 训练文件列表文件
|
|--val_list.txt # 验证文件列表文件
|
└--labels.txt # 标签列表文件
```
其中,相应的文件名可根据需要自行定义。
`train_list.txt``val_list.txt`文本以空格为分割符分为两列,第一列为图像文件相对于dataset的相对路径,第二列为标注文件相对于dataset的相对路径。如下所示:
```
JPEGImages/xxx1.jpg Annotations/xxx1.xml
JPEGImages/xxx2.jpg Annotations/xxx2.xml
...
```
`labels.txt`: 每一行为一个单独的类别,相应的行号即为类别对应的id(行号从0开始),如下所示:
```
labelA
labelB
...
```
[点击这里](https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz),下载昆虫检测数据集
在PaddleX中,使用`paddlex.cv.datasets.VOCDetection`([API说明](./apis/datasets.html#vocdetection))加载目标检测VOC数据集
## 目标检测和实例分割COCO
目标检测和实例分割COCO数据集包含图像文件夹及图像标注信息文件。
参考数据文件结构如下:
```
./dataset/ # 数据集根目录
|--JPEGImages # 图像目录
| |--xxx1.jpg
| |--...
| └--...
|
|--train.json # 训练相关信息文件
|
└--val.json # 验证相关信息文件
```
其中,相应的文件名可根据需要自行定义。
`train.json``val.json`存储与标注信息、图像文件相关的信息。如下所示:
```
{
"annotations": [
{
"iscrowd": 0,
"category_id": 1,
"id": 1,
"area": 33672.0,
"image_id": 1,
"bbox": [232, 32, 138, 244],
"segmentation": [[32, 168, 365, 117, ...]]
},
...
],
"images": [
{
"file_name": "xxx1.jpg",
"height": 512,
"id": 267,
"width": 612
},
...
]
"categories": [
{
"name": "labelA",
"id": 1,
"supercategory": "component"
}
]
}
```
每个字段的含义如下所示:
| 域名 | 字段名 | 含义 | 数据类型 | 备注 |
|:-----|:--------|:------------|------|:-----|
| annotations | id | 标注信息id | int | 从1开始 |
| annotations | iscrowd | 标注框是否为一组对象 | int | 只有0、1两种取值 |
| annotations | category_id | 标注框类别id | int | |
| annotations | area | 标注框的面积 | float | |
| annotations | image_id | 当前标注信息所在图像的id | int | |
| annotations | bbox | 标注框坐标 | list | 长度为4,分别代表x,y,w,h |
| annotations | segmentation | 标注区域坐标 | list | list中有至少1个list,每个list由每个小区域坐标点的横纵坐标(x,y)组成 |
| images | id | 图像id | int | 从1开始 |
| images | file_name | 图像文件名 | str | |
| images | height | 图像高度 | int | |
| images | width | 图像宽度 | int | |
| categories | id | 类别id | int | 从1开始 |
| categories | name | 类别标签名 | str | |
| categories | supercategory | 类别父类的标签名 | str | |
[点击这里](https://bj.bcebos.com/paddlex/datasets/garbage_ins_det.tar.gz),下载垃圾实例分割数据集
在PaddleX中,使用`paddlex.cv.datasets.COCODetection`([API说明](./apis/datasets.html#cocodetection))加载COCO格式数据集
## 语义分割数据
语义分割数据集包含原图、标注图及相应的文件列表文件。
参考数据文件结构如下:
```
./dataset/ # 数据集根目录
|--images # 原图目录
| |--xxx1.png
| |--...
| └--...
|
|--annotations # 标注图目录
| |--xxx1.png
| |--...
| └--...
|
|--train_list.txt # 训练文件列表文件
|
|--val_list.txt # 验证文件列表文件
|
└--labels.txt # 标签列表
```
其中,相应的文件名可根据需要自行定义。
`train_list.txt``val_list.txt`文本以空格为分割符分为两列,第一列为图像文件相对于dataset的相对路径,第二列为标注图像文件相对于dataset的相对路径。如下所示:
```
images/xxx1.png annotations/xxx1.png
images/xxx2.png annotations/xxx2.png
...
```
`labels.txt`: 每一行为一个单独的类别,相应的行号即为类别对应的id(行号从0开始),如下所示:
```
labelA
labelB
...
```
标注图像为单通道图像,像素值即为对应的类别,像素标注类别需要从0开始递增,
例如0,1,2,3表示有4种类别,标注类别最多为256类。其中可以指定特定的像素值用于表示该值的像素不参与训练和评估(默认为255)。
[点击这里](https://bj.bcebos.com/paddlex/datasets/optic_disc_seg.tar.gz),下载视盘语义分割数据集
在PaddleX中,使用`paddlex.cv.datasets.SegReader`([API说明](./apis/datasets.html#segreader))加载语义分割数据集
该部分内容已迁移至[附录](./appendix/datasets.md)
多端部署
==============
.. toctree::
:maxdepth: 2
:caption: 文档目录:
......@@ -29,7 +29,6 @@ from . import cls
from . import slim
from . import convertor
from . import tools
from . import interpret
from . import deploy
try:
......@@ -51,4 +50,7 @@ load_model = cv.models.load_model
datasets = cv.datasets
log_level = 2
from . import interpret
__version__ = '0.2.0.github'
......@@ -28,7 +28,7 @@ class EasyDataCls(ImageNet):
Args:
data_dir (str): 数据集所在的目录路径。
file_list (str): 描述数据集图片文件和类别id的文件路径(文本内每行路径为相对data_dir的相对路)。
file_list (str): 描述数据集图片文件和对应标注文件的文件路径(文本内每行路径为相对data_dir的相对路)。
label_list (str): 描述数据集包含的类别信息文件路径。
transforms (paddlex.cls.transforms): 数据集中每个样本的预处理/增强算子。
num_workers (int|str): 数据集中样本在预处理过程中的线程或进程数。默认为'auto'。当设为'auto'时,根据
......
......@@ -139,9 +139,10 @@ class BaseAPI:
dataset.num_samples = batch_size * batch_num
try:
from .slim.post_quantization import PaddleXPostTrainingQuantization
PaddleXPostTrainingQuantization._collect_target_varnames
except:
raise Exception(
"Model Quantization is not available, try to upgrade your paddlepaddle>=1.7.0"
"Model Quantization is not available, try to upgrade your paddlepaddle>=1.8.0"
)
is_use_cache_file = True
if cache_dir is None:
......@@ -544,4 +545,4 @@ class BaseAPI:
best_accuracy))
if eval_dataset is not None and early_stop:
if earlystop(current_accuracy):
break
break
\ No newline at end of file
......@@ -14,7 +14,7 @@
from paddle.fluid.contrib.slim.quantization.quantization_pass import QuantizationTransformPass
from paddle.fluid.contrib.slim.quantization.quantization_pass import AddQuantDequantPass
from paddle.fluid.contrib.slim.quantization.quantization_pass import _op_real_in_out_name
from paddle.fluid.contrib.slim.quantization.quantization_pass import _out_scale_op_list
from paddle.fluid.contrib.slim.quantization import PostTrainingQuantization
import paddlex.utils.logging as logging
import paddle.fluid as fluid
......@@ -44,7 +44,6 @@ class PaddleXPostTrainingQuantization(PostTrainingQuantization):
fp32 model. It uses calibrate data to calculate the scale factor of
quantized variables, and inserts fake quant/dequant op to obtain the
quantized model.
Args:
executor(fluid.Executor): The executor to load, run and save the
quantized model.
......@@ -78,6 +77,21 @@ class PaddleXPostTrainingQuantization(PostTrainingQuantization):
Returns:
None
'''
self._support_activation_quantize_type = [
'range_abs_max', 'moving_average_abs_max', 'abs_max'
]
self._support_weight_quantize_type = ['abs_max', 'channel_wise_abs_max']
self._support_algo_type = ['KL', 'abs_max', 'min_max']
self._support_quantize_op_type = \
list(set(QuantizationTransformPass._supported_quantizable_op_type +
AddQuantDequantPass._supported_quantizable_op_type))
# Check inputs
assert executor is not None, "The executor cannot be None."
assert batch_size > 0, "The batch_size should be greater than 0."
assert algo in self._support_algo_type, \
"The algo should be KL, abs_max or min_max."
self._executor = executor
self._dataset = dataset
self._batch_size = batch_size
......@@ -86,18 +100,19 @@ class PaddleXPostTrainingQuantization(PostTrainingQuantization):
self._algo = algo
self._is_use_cache_file = is_use_cache_file
self._cache_dir = cache_dir
self._activation_bits = 8
self._weight_bits = 8
self._activation_quantize_type = 'range_abs_max'
self._weight_quantize_type = 'channel_wise_abs_max'
if self._is_use_cache_file and not os.path.exists(self._cache_dir):
os.mkdir(self._cache_dir)
supported_quantizable_op_type = \
QuantizationTransformPass._supported_quantizable_op_type + \
AddQuantDequantPass._supported_quantizable_op_type
if is_full_quantize:
self._quantizable_op_type = supported_quantizable_op_type
self._quantizable_op_type = self._support_quantize_op_type
else:
self._quantizable_op_type = quantizable_op_type
for op_type in self._quantizable_op_type:
assert op_type in supported_quantizable_op_type + \
assert op_type in self._support_quantize_op_type + \
AddQuantDequantPass._activation_type, \
op_type + " is not supported for quantization."
......@@ -107,25 +122,29 @@ class PaddleXPostTrainingQuantization(PostTrainingQuantization):
self._fetch_list = list(outputs.values())
self._data_loader = None
self._op_real_in_out_name = _op_real_in_out_name
self._out_scale_op_list = _out_scale_op_list
self._bit_length = 8
self._quantized_weight_var_name = set()
self._quantized_act_var_name = set()
self._sampling_data = {}
self._quantized_var_scale_factor = {}
self._quantized_var_kl_threshold = {}
self._quantized_var_min = {}
self._quantized_var_max = {}
self._quantized_var_abs_max = {}
def quantize(self):
'''
Quantize the fp32 model. Use calibrate data to calculate the scale factor of
quantized variables, and inserts fake quant/dequant op to obtain the
quantized model.
Args:
None
Returns:
the program of quantized model.
'''
self._preprocess()
self._load_model_data()
self._collect_target_varnames()
self._set_activation_persistable()
batch_ct = 0
for data in self._data_loader():
batch_ct += 1
......@@ -140,7 +159,10 @@ class PaddleXPostTrainingQuantization(PostTrainingQuantization):
feed=data,
fetch_list=self._fetch_list,
return_numpy=False)
self._sample_data(batch_id)
if self._algo == "KL":
self._sample_data(batch_id)
else:
self._sample_threshold()
end = time.time()
logging.debug('[Run batch data] Batch={}/{}, time_each_batch={} s.'.format(
str(batch_id + 1),
......@@ -150,19 +172,23 @@ class PaddleXPostTrainingQuantization(PostTrainingQuantization):
if self._batch_nums and batch_id >= self._batch_nums:
break
logging.info("All run batch: ".format(batch_id))
self._reset_activation_persistable()
logging.info("Calculate scale factor ...")
self._calculate_scale_factor()
if self._algo == "KL":
self._calculate_kl_threshold()
logging.info("Update the program ...")
self._update_program()
if self._algo in ["KL", "abs_max"]:
self._update_program()
else:
self._save_input_threhold()
logging.info("Save ...")
self._save_output_scale()
self._save_output_threshold()
logging.info("Finish quant!")
return self._program
def save_quantized_model(self, save_model_path):
'''
Save the quantized model to the disk.
Args:
save_model_path(str): The path to save the quantized model
Returns:
......@@ -176,88 +202,47 @@ class PaddleXPostTrainingQuantization(PostTrainingQuantization):
executor=self._executor,
params_filename='__params__',
main_program=self._program)
def _preprocess(self):
def _load_model_data(self):
'''
Load model and set data loader, collect the variable names for sampling,
and set activation variables to be persistable.
Set data loader.
'''
feed_vars = [fluid.framework._get_var(var.name, self._program) \
for var in self._feed_list]
self._data_loader = fluid.io.DataLoader.from_generator(
feed_list=feed_vars, capacity=3 * self._batch_size, iterable=True)
self._data_loader.set_sample_list_generator(
self._dataset.generator(self._batch_size, drop_last=True),
places=self._place)
# collect the variable names for sampling
persistable_var_names = []
for var in self._program.list_vars():
if var.persistable:
persistable_var_names.append(var.name)
for op in self._program.global_block().ops:
op_type = op.type
if op_type in self._quantizable_op_type:
if op_type in ("conv2d", "depthwise_conv2d"):
self._quantized_act_var_name.add(op.input("Input")[0])
self._quantized_weight_var_name.add(op.input("Filter")[0])
self._quantized_act_var_name.add(op.output("Output")[0])
elif op_type == "mul":
if self._is_input_all_not_persistable(
op, persistable_var_names):
op._set_attr("skip_quant", True)
logging.warning(
"Skip quant a mul op for two input variables are not persistable"
)
else:
self._quantized_act_var_name.add(op.input("X")[0])
self._quantized_weight_var_name.add(op.input("Y")[0])
self._quantized_act_var_name.add(op.output("Out")[0])
else:
# process other quantizable op type, the input must all not persistable
if self._is_input_all_not_persistable(
op, persistable_var_names):
input_output_name_list = self._op_real_in_out_name[
op_type]
for input_name in input_output_name_list[0]:
for var_name in op.input(input_name):
self._quantized_act_var_name.add(var_name)
for output_name in input_output_name_list[1]:
for var_name in op.output(output_name):
self._quantized_act_var_name.add(var_name)
# set activation variables to be persistable, so can obtain
# the tensor data in sample_data
for var in self._program.list_vars():
if var.name in self._quantized_act_var_name:
var.persistable = True
def _calculate_scale_factor(self):
def _calculate_kl_threshold(self):
'''
Calculate the scale factor of quantized variables.
Calculate the KL threshold of quantized variables.
'''
# apply channel_wise_abs_max quantization for weights
assert self._algo == "KL", "The algo should be KL to calculate kl threshold."
ct = 1
# Abs_max threshold for weights
for var_name in self._quantized_weight_var_name:
start = time.time()
data = self._sampling_data[var_name]
scale_factor_per_channel = []
for i in range(data.shape[0]):
abs_max_value = np.max(np.abs(data[i]))
scale_factor_per_channel.append(abs_max_value)
self._quantized_var_scale_factor[
var_name] = scale_factor_per_channel
weight_data = self._sampling_data[var_name]
weight_threshold = None
if self._weight_quantize_type == "abs_max":
weight_threshold = np.max(np.abs(weight_data))
elif self._weight_quantize_type == "channel_wise_abs_max":
weight_threshold = []
for i in range(weight_data.shape[0]):
abs_max_value = np.max(np.abs(weight_data[i]))
weight_threshold.append(abs_max_value)
self._quantized_var_kl_threshold[var_name] = weight_threshold
end = time.time()
logging.debug('[Calculate weight] Weight_id={}/{}, time_each_weight={} s.'.format(
str(ct),
str(len(self._quantized_weight_var_name)),
str(end-start)))
ct += 1
ct = 1
# apply kl quantization for activation
# KL threshold for activations
if self._is_use_cache_file:
for var_name in self._quantized_act_var_name:
start = time.time()
......@@ -269,13 +254,8 @@ class PaddleXPostTrainingQuantization(PostTrainingQuantization):
sampling_data.append(np.load(file_path))
os.remove(file_path)
sampling_data = np.concatenate(sampling_data)
if self._algo == "KL":
self._quantized_var_scale_factor[var_name] = \
self._get_kl_scaling_factor(np.abs(sampling_data))
else:
self._quantized_var_scale_factor[var_name] = \
np.max(np.abs(sampling_data))
self._quantized_var_kl_threshold[var_name] = \
self._get_kl_scaling_factor(np.abs(sampling_data))
end = time.time()
logging.debug('[Calculate activation] Activation_id={}/{}, time_each_activation={} s.'.format(
str(ct),
......@@ -287,15 +267,13 @@ class PaddleXPostTrainingQuantization(PostTrainingQuantization):
start = time.time()
self._sampling_data[var_name] = np.concatenate(
self._sampling_data[var_name])
if self._algo == "KL":
self._quantized_var_scale_factor[var_name] = \
self._get_kl_scaling_factor(np.abs(self._sampling_data[var_name]))
else:
self._quantized_var_scale_factor[var_name] = \
np.max(np.abs(self._sampling_data[var_name]))
self._quantized_var_kl_threshold[var_name] = \
self._get_kl_scaling_factor(np.abs(self._sampling_data[var_name]))
end = time.time()
logging.debug('[Calculate activation] Activation_id={}/{}, time_each_activation={} s.'.format(
str(ct),
str(len(self._quantized_act_var_name)),
str(end-start)))
ct += 1
\ No newline at end of file
ct += 1
\ No newline at end of file
......@@ -13,15 +13,30 @@
#limitations under the License.
import os
import os.path as osp
import paddle.fluid as fluid
import paddlex as pdx
import numpy as np
from paddle.fluid.param_attr import ParamAttr
from ..as_data_reader.readers import preprocess_image
from paddlex.interpret.as_data_reader.readers import preprocess_image
root_path = os.environ['HOME']
root_path = os.path.join(root_path, '.paddlex')
h_pre_models = os.path.join(root_path, "pre_models")
h_pre_models_kmeans = os.path.join(h_pre_models, "kmeans_model.pkl")
def gen_user_home():
if "HOME" in os.environ:
home_path = os.environ["HOME"]
if os.path.exists(home_path) and os.path.isdir(home_path):
return home_path
return os.path.expanduser('~')
root_path = gen_user_home()
root_path = osp.join(root_path, '.paddlex')
h_pre_models = osp.join(root_path, "pre_models")
if not osp.exists(h_pre_models):
if not osp.exists(root_path):
os.makedirs(root_path)
url = "https://bj.bcebos.com/paddlex/interpret/pre_models.tar.gz"
pdx.utils.download_and_decompress(url, path=root_path)
h_pre_models_kmeans = osp.join(h_pre_models, "kmeans_model.pkl")
def paddle_get_fc_weights(var_name="fc_0.w_0"):
......@@ -110,4 +125,4 @@ def compute_features_for_kmeans(data_content):
images = preprocess_image(data_content) # transpose to [N, 3, H, W], scaled to [0.0, 1.0]
result = exe.run(prog, fetch_list=[resized_features], feed={'image': images})
return result[0][0]
\ No newline at end of file
return result[0][0]
......@@ -17,9 +17,10 @@ import numpy as np
import time
from . import lime_base
from ..as_data_reader.readers import read_image
from ._session_preparation import paddle_get_fc_weights, compute_features_for_kmeans, h_pre_models_kmeans
from .normlime_base import combine_normlime_and_lime, get_feature_for_kmeans, load_kmeans_model
from paddlex.interpret.as_data_reader.readers import read_image
import cv2
......@@ -442,3 +443,6 @@ def save_fig(data_, save_outdir, algorithm_name, num_samples=3000):
save_outdir, f_out
)
)
print('The image of intrepretation result save in {}'.format(os.path.join(
save_outdir, f_out
)))
......@@ -36,6 +36,7 @@ from skimage.color import gray2rgb
from sklearn.linear_model import Ridge, lars_path
from sklearn.utils import check_random_state
import tqdm
import copy
from functools import partial
from skimage.segmentation import quickshift
......@@ -509,7 +510,7 @@ class LimeImageInterpreter(object):
labels = []
data[0, :] = 1
imgs = []
for row in data:
for row in tqdm.tqdm(data):
temp = copy.deepcopy(image)
zeros = np.where(row == 0)[0]
mask = np.zeros(segments.shape).astype(bool)
......
......@@ -16,7 +16,7 @@ import os
import numpy as np
import glob
from ..as_data_reader.readers import read_image
from paddlex.interpret.as_data_reader.readers import read_image
from . import lime_base
from ._session_preparation import compute_features_for_kmeans, h_pre_models_kmeans
......
......@@ -21,7 +21,7 @@ import paddlex as pdx
from .interpretation_predict import interpretation_predict
from .core.interpretation import Interpretation
from .core.normlime_base import precompute_normlime_weights
from .core._session_preparation import gen_user_home
def visualize(img_file,
model,
......@@ -44,6 +44,8 @@ def visualize(img_file,
'Now the interpretation visualize only be supported in classifier!'
if model.status != 'Normal':
raise Exception('The interpretation only can deal with the Normal model')
if not osp.exists(save_dir):
os.makedirs(save_dir)
model.arrange_transforms(
transforms=model.test_transforms, mode='test')
tmp_transforms = copy.deepcopy(model.test_transforms)
......@@ -107,13 +109,14 @@ def get_normlime_interpreter(img, model, dataset, num_samples=3000, batch_size=5
labels_name = None
if dataset is not None:
labels_name = dataset.labels
root_path = os.environ['HOME']
root_path = gen_user_home()
root_path = osp.join(root_path, '.paddlex')
pre_models_path = osp.join(root_path, "pre_models")
if not osp.exists(pre_models_path):
os.makedirs(pre_models_path)
if not osp.exists(root_path):
os.makedirs(root_path)
url = "https://bj.bcebos.com/paddlex/interpret/pre_models.tar.gz"
pdx.utils.download_and_decompress(url, path=pre_models_path)
pdx.utils.download_and_decompress(url, path=root_path)
npy_dir = precompute_for_normlime(precompute_predict_func,
dataset,
num_samples=num_samples,
......
......@@ -24,18 +24,15 @@ test_dataset = pdx.datasets.ImageNet(
transforms=model.test_transforms)
# 可解释性可视化
# LIME算法
pdx.interpret.visualize(
'mini_imagenet_veg/mushroom/n07734744_1106.JPEG',
model,
test_dataset,
algo='lime',
save_dir='./')
# NormLIME算法
'mini_imagenet_veg/mushroom/n07734744_1106.JPEG',
model,
test_dataset,
algo='lime',
save_dir='./')
pdx.interpret.visualize(
'mini_imagenet_veg/mushroom/n07734744_1106.JPEG',
model,
test_dataset,
algo='normlime',
save_dir='./')
'mini_imagenet_veg/mushroom/n07734744_1106.JPEG',
model,
test_dataset,
algo='normlime',
save_dir='./')
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册