Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleX
提交
0e8fd3f5
P
PaddleX
项目概览
PaddlePaddle
/
PaddleX
通知
138
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
43
列表
看板
标记
里程碑
合并请求
5
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleX
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
43
Issue
43
列表
看板
标记
里程碑
合并请求
5
合并请求
5
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0e8fd3f5
编写于
6月 08, 2020
作者:
F
FlyingQianMM
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add unsupport pretrain weights in docs
上级
0c1831c5
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
6 addition
and
6 deletion
+6
-6
docs/apis/models/detection.md
docs/apis/models/detection.md
+1
-1
docs/apis/models/instance_segmentation.md
docs/apis/models/instance_segmentation.md
+1
-1
docs/apis/models/semantic_segmentation.md
docs/apis/models/semantic_segmentation.md
+3
-3
paddlex/cv/models/utils/pretrain_weights.py
paddlex/cv/models/utils/pretrain_weights.py
+1
-1
未找到文件。
docs/apis/models/detection.md
浏览文件 @
0e8fd3f5
...
...
@@ -129,7 +129,7 @@ train(self, num_epochs, train_dataset, train_batch_size=2, eval_dataset=None, sa
> > - **save_interval_epochs** (int): 模型保存间隔(单位:迭代轮数)。默认为1。
> > - **log_interval_steps** (int): 训练日志输出间隔(单位:迭代次数)。默认为2。
> > - **save_dir** (str): 模型保存路径。默认值为'output'。
> > - **pretrain_weights** (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',则自动下载在ImageNet图片数据上预训练的模型权重;若为字符串'COCO',则自动下载在COCO数据集上预训练的模型权重;为None,则不使用预训练模型。默认为None。
> > - **pretrain_weights** (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',则自动下载在ImageNet图片数据上预训练的模型权重;若为字符串'COCO',则自动下载在COCO数据集上预训练的模型权重
(注意:暂未提供ResNet18的COCO预训练模型)
;为None,则不使用预训练模型。默认为None。
> > - **optimizer** (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认优化器:fluid.layers.piecewise_decay衰减策略,fluid.optimizer.Momentum优化方法。
> > - **learning_rate** (float): 默认优化器的初始学习率。默认为0.0025。
> > - **warmup_steps** (int): 默认优化器进行warmup过程的步数。默认为500。
...
...
docs/apis/models/instance_segmentation.md
浏览文件 @
0e8fd3f5
...
...
@@ -34,7 +34,7 @@ train(self, num_epochs, train_dataset, train_batch_size=1, eval_dataset=None, sa
> > - **save_interval_epochs** (int): 模型保存间隔(单位:迭代轮数)。默认为1。
> > - **log_interval_steps** (int): 训练日志输出间隔(单位:迭代次数)。默认为2。
> > - **save_dir** (str): 模型保存路径。默认值为'output'。
> > - **pretrain_weights** (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',则自动下载在ImageNet图片数据上预训练的模型权重;若为字符串'COCO',则自动下载在COCO数据集上预训练的模型权重;若为None,则不使用预训练模型。默认为None。
> > - **pretrain_weights** (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',则自动下载在ImageNet图片数据上预训练的模型权重;若为字符串'COCO',则自动下载在COCO数据集上预训练的模型权重
(注意:暂未提供ResNet18和HRNet_W18的COCO预训练模型)
;若为None,则不使用预训练模型。默认为None。
> > - **optimizer** (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认优化器:fluid.layers.piecewise_decay衰减策略,fluid.optimizer.Momentum优化方法。
> > - **learning_rate** (float): 默认优化器的初始学习率。默认为0.00125。
> > - **warmup_steps** (int): 默认优化器进行warmup过程的步数。默认为500。
...
...
docs/apis/models/semantic_segmentation.md
浏览文件 @
0e8fd3f5
...
...
@@ -12,7 +12,7 @@ paddlex.seg.DeepLabv3p(num_classes=2, backbone='MobileNetV2_x1.0', output_stride
> **参数**
> > - **num_classes** (int): 类别数。
> > - **backbone** (str): DeepLabv3+的backbone网络,实现特征图的计算,取值范围为['Xception65', 'Xception41', 'MobileNetV2_x0.25', 'MobileNetV2_x0.5', 'MobileNetV2_x1.0', 'MobileNetV2_x1.5', 'MobileNetV2_x2.0'],'MobileNetV2_x1.0'。
> > - **backbone** (str): DeepLabv3+的backbone网络,实现特征图的计算,取值范围为['Xception65', 'Xception41', 'MobileNetV2_x0.25', 'MobileNetV2_x0.5', 'MobileNetV2_x1.0', 'MobileNetV2_x1.5', 'MobileNetV2_x2.0'],
默认值为
'MobileNetV2_x1.0'。
> > - **output_stride** (int): backbone 输出特征图相对于输入的下采样倍数,一般取值为8或16。默认16。
> > - **aspp_with_sep_conv** (bool): decoder模块是否采用separable convolutions。默认True。
> > - **decoder_use_sep_conv** (bool): decoder模块是否采用separable convolutions。默认True。
...
...
@@ -40,7 +40,7 @@ train(self, num_epochs, train_dataset, train_batch_size=2, eval_dataset=None, ev
> > - **save_interval_epochs** (int): 模型保存间隔(单位:迭代轮数)。默认为1。
> > - **log_interval_steps** (int): 训练日志输出间隔(单位:迭代次数)。默认为2。
> > - **save_dir** (str): 模型保存路径。默认'output'
> > - **pretrain_weights** (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',则自动下载在ImageNet图片数据上预训练的模型权重;若为字符串'COCO',则自动下载在COCO数据集上预训练的模型权重
;若为字符串'CITYSCAPES',则自动下载在CITYSCAPES数据集上预训练的模型权重
;为None,则不使用预训练模型。默认'IMAGENET'。
> > - **pretrain_weights** (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',则自动下载在ImageNet图片数据上预训练的模型权重;若为字符串'COCO',则自动下载在COCO数据集上预训练的模型权重
(注意:暂未提供Xception41、MobileNetV2_x0.25、MobileNetV2_x0.5、MobileNetV2_x1.5、MobileNetV2_x2.0的COCO预训练模型);若为字符串'CITYSCAPES',则自动下载在CITYSCAPES数据集上预训练的模型权重(注意:暂未提供Xception41、MobileNetV2_x0.25、MobileNetV2_x0.5、MobileNetV2_x1.5、MobileNetV2_x2.0的CITYSCAPES预训练模型)
;为None,则不使用预训练模型。默认'IMAGENET'。
> > - **optimizer** (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认的优化器:使用fluid.optimizer.Momentum优化方法,polynomial的学习率衰减策略。
> > - **learning_rate** (float): 默认优化器的初始学习率。默认0.01。
> > - **lr_decay_power** (float): 默认优化器学习率衰减指数。默认0.9。
...
...
@@ -209,7 +209,7 @@ train(self, num_epochs, train_dataset, train_batch_size=2, eval_dataset=None, ev
> > - **save_interval_epochs** (int): 模型保存间隔(单位:迭代轮数)。默认为1。
> > - **log_interval_steps** (int): 训练日志输出间隔(单位:迭代次数)。默认为2。
> > - **save_dir** (str): 模型保存路径。默认'output'
> > - **pretrain_weights** (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',则自动下载在ImageNet数据集上预训练的模型权重;若为字符串'CITYSCAPES',则自动下载在CITYSCAPES图片数据上预训练的模型权重;为None,则不使用预训练模型。默认'IMAGENET'。
> > - **pretrain_weights** (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',则自动下载在ImageNet数据集上预训练的模型权重;若为字符串'CITYSCAPES',则自动下载在CITYSCAPES图片数据上预训练的模型权重
(注意:目前仅提供`width`取值为18的CITYSCAPES预训练模型)
;为None,则不使用预训练模型。默认'IMAGENET'。
> > - **optimizer** (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认的优化器:使用fluid.optimizer.Momentum优化方法,polynomial的学习率衰减策略。
> > - **learning_rate** (float): 默认优化器的初始学习率。默认0.01。
> > - **lr_decay_power** (float): 默认优化器学习率衰减指数。默认0.9。
...
...
paddlex/cv/models/utils/pretrain_weights.py
浏览文件 @
0e8fd3f5
...
...
@@ -99,7 +99,7 @@ coco_pretrain = {
'MaskRCNN_ResNet50_vd_COCO'
:
'https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_vd_fpn_2x.tar'
,
'MaskRCNN_ResNet101_COCO'
:
'https://paddlemodels.bj.bcebos.com/object_detection/
faster_rcnn_r101_fpn_2
x.tar'
,
'https://paddlemodels.bj.bcebos.com/object_detection/
mask_rcnn_r101_fpn_1
x.tar'
,
'MaskRCNN_ResNet101_vd_COCO'
:
'https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r101_vd_fpn_1x.tar'
,
'UNet_COCO'
:
'https://paddleseg.bj.bcebos.com/models/unet_coco_v3.tgz'
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录