From 0e8fd3f5af96d739d4789bf9c9b6a343d60e05af Mon Sep 17 00:00:00 2001 From: FlyingQianMM <245467267@qq.com> Date: Mon, 8 Jun 2020 20:22:34 +0800 Subject: [PATCH] add unsupport pretrain weights in docs --- docs/apis/models/detection.md | 2 +- docs/apis/models/instance_segmentation.md | 2 +- docs/apis/models/semantic_segmentation.md | 6 +++--- paddlex/cv/models/utils/pretrain_weights.py | 2 +- 4 files changed, 6 insertions(+), 6 deletions(-) diff --git a/docs/apis/models/detection.md b/docs/apis/models/detection.md index ce4e7b6..f76e559 100755 --- a/docs/apis/models/detection.md +++ b/docs/apis/models/detection.md @@ -129,7 +129,7 @@ train(self, num_epochs, train_dataset, train_batch_size=2, eval_dataset=None, sa > > - **save_interval_epochs** (int): 模型保存间隔(单位:迭代轮数)。默认为1。 > > - **log_interval_steps** (int): 训练日志输出间隔(单位:迭代次数)。默认为2。 > > - **save_dir** (str): 模型保存路径。默认值为'output'。 -> > - **pretrain_weights** (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',则自动下载在ImageNet图片数据上预训练的模型权重;若为字符串'COCO',则自动下载在COCO数据集上预训练的模型权重;为None,则不使用预训练模型。默认为None。 +> > - **pretrain_weights** (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',则自动下载在ImageNet图片数据上预训练的模型权重;若为字符串'COCO',则自动下载在COCO数据集上预训练的模型权重(注意:暂未提供ResNet18的COCO预训练模型);为None,则不使用预训练模型。默认为None。 > > - **optimizer** (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认优化器:fluid.layers.piecewise_decay衰减策略,fluid.optimizer.Momentum优化方法。 > > - **learning_rate** (float): 默认优化器的初始学习率。默认为0.0025。 > > - **warmup_steps** (int): 默认优化器进行warmup过程的步数。默认为500。 diff --git a/docs/apis/models/instance_segmentation.md b/docs/apis/models/instance_segmentation.md index 6b6a03c..72d008b 100755 --- a/docs/apis/models/instance_segmentation.md +++ b/docs/apis/models/instance_segmentation.md @@ -34,7 +34,7 @@ train(self, num_epochs, train_dataset, train_batch_size=1, eval_dataset=None, sa > > - **save_interval_epochs** (int): 模型保存间隔(单位:迭代轮数)。默认为1。 > > - **log_interval_steps** (int): 训练日志输出间隔(单位:迭代次数)。默认为2。 > > - **save_dir** (str): 模型保存路径。默认值为'output'。 -> > - **pretrain_weights** (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',则自动下载在ImageNet图片数据上预训练的模型权重;若为字符串'COCO',则自动下载在COCO数据集上预训练的模型权重;若为None,则不使用预训练模型。默认为None。 +> > - **pretrain_weights** (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',则自动下载在ImageNet图片数据上预训练的模型权重;若为字符串'COCO',则自动下载在COCO数据集上预训练的模型权重(注意:暂未提供ResNet18和HRNet_W18的COCO预训练模型);若为None,则不使用预训练模型。默认为None。 > > - **optimizer** (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认优化器:fluid.layers.piecewise_decay衰减策略,fluid.optimizer.Momentum优化方法。 > > - **learning_rate** (float): 默认优化器的初始学习率。默认为0.00125。 > > - **warmup_steps** (int): 默认优化器进行warmup过程的步数。默认为500。 diff --git a/docs/apis/models/semantic_segmentation.md b/docs/apis/models/semantic_segmentation.md index c8e6dae..de44e08 100755 --- a/docs/apis/models/semantic_segmentation.md +++ b/docs/apis/models/semantic_segmentation.md @@ -12,7 +12,7 @@ paddlex.seg.DeepLabv3p(num_classes=2, backbone='MobileNetV2_x1.0', output_stride > **参数** > > - **num_classes** (int): 类别数。 -> > - **backbone** (str): DeepLabv3+的backbone网络,实现特征图的计算,取值范围为['Xception65', 'Xception41', 'MobileNetV2_x0.25', 'MobileNetV2_x0.5', 'MobileNetV2_x1.0', 'MobileNetV2_x1.5', 'MobileNetV2_x2.0'],'MobileNetV2_x1.0'。 +> > - **backbone** (str): DeepLabv3+的backbone网络,实现特征图的计算,取值范围为['Xception65', 'Xception41', 'MobileNetV2_x0.25', 'MobileNetV2_x0.5', 'MobileNetV2_x1.0', 'MobileNetV2_x1.5', 'MobileNetV2_x2.0'],默认值为'MobileNetV2_x1.0'。 > > - **output_stride** (int): backbone 输出特征图相对于输入的下采样倍数,一般取值为8或16。默认16。 > > - **aspp_with_sep_conv** (bool): decoder模块是否采用separable convolutions。默认True。 > > - **decoder_use_sep_conv** (bool): decoder模块是否采用separable convolutions。默认True。 @@ -40,7 +40,7 @@ train(self, num_epochs, train_dataset, train_batch_size=2, eval_dataset=None, ev > > - **save_interval_epochs** (int): 模型保存间隔(单位:迭代轮数)。默认为1。 > > - **log_interval_steps** (int): 训练日志输出间隔(单位:迭代次数)。默认为2。 > > - **save_dir** (str): 模型保存路径。默认'output' -> > - **pretrain_weights** (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',则自动下载在ImageNet图片数据上预训练的模型权重;若为字符串'COCO',则自动下载在COCO数据集上预训练的模型权重;若为字符串'CITYSCAPES',则自动下载在CITYSCAPES数据集上预训练的模型权重;为None,则不使用预训练模型。默认'IMAGENET'。 +> > - **pretrain_weights** (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',则自动下载在ImageNet图片数据上预训练的模型权重;若为字符串'COCO',则自动下载在COCO数据集上预训练的模型权重(注意:暂未提供Xception41、MobileNetV2_x0.25、MobileNetV2_x0.5、MobileNetV2_x1.5、MobileNetV2_x2.0的COCO预训练模型);若为字符串'CITYSCAPES',则自动下载在CITYSCAPES数据集上预训练的模型权重(注意:暂未提供Xception41、MobileNetV2_x0.25、MobileNetV2_x0.5、MobileNetV2_x1.5、MobileNetV2_x2.0的CITYSCAPES预训练模型);为None,则不使用预训练模型。默认'IMAGENET'。 > > - **optimizer** (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认的优化器:使用fluid.optimizer.Momentum优化方法,polynomial的学习率衰减策略。 > > - **learning_rate** (float): 默认优化器的初始学习率。默认0.01。 > > - **lr_decay_power** (float): 默认优化器学习率衰减指数。默认0.9。 @@ -209,7 +209,7 @@ train(self, num_epochs, train_dataset, train_batch_size=2, eval_dataset=None, ev > > - **save_interval_epochs** (int): 模型保存间隔(单位:迭代轮数)。默认为1。 > > - **log_interval_steps** (int): 训练日志输出间隔(单位:迭代次数)。默认为2。 > > - **save_dir** (str): 模型保存路径。默认'output' -> > - **pretrain_weights** (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',则自动下载在ImageNet数据集上预训练的模型权重;若为字符串'CITYSCAPES',则自动下载在CITYSCAPES图片数据上预训练的模型权重;为None,则不使用预训练模型。默认'IMAGENET'。 +> > - **pretrain_weights** (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',则自动下载在ImageNet数据集上预训练的模型权重;若为字符串'CITYSCAPES',则自动下载在CITYSCAPES图片数据上预训练的模型权重(注意:目前仅提供`width`取值为18的CITYSCAPES预训练模型);为None,则不使用预训练模型。默认'IMAGENET'。 > > - **optimizer** (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认的优化器:使用fluid.optimizer.Momentum优化方法,polynomial的学习率衰减策略。 > > - **learning_rate** (float): 默认优化器的初始学习率。默认0.01。 > > - **lr_decay_power** (float): 默认优化器学习率衰减指数。默认0.9。 diff --git a/paddlex/cv/models/utils/pretrain_weights.py b/paddlex/cv/models/utils/pretrain_weights.py index 84e6b72..90f3405 100644 --- a/paddlex/cv/models/utils/pretrain_weights.py +++ b/paddlex/cv/models/utils/pretrain_weights.py @@ -99,7 +99,7 @@ coco_pretrain = { 'MaskRCNN_ResNet50_vd_COCO': 'https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_vd_fpn_2x.tar', 'MaskRCNN_ResNet101_COCO': - 'https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_2x.tar', + 'https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r101_fpn_1x.tar', 'MaskRCNN_ResNet101_vd_COCO': 'https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r101_vd_fpn_1x.tar', 'UNet_COCO': 'https://paddleseg.bj.bcebos.com/models/unet_coco_v3.tgz', -- GitLab