deeplabv3p.py 22.2 KB
Newer Older
F
FlyingQianMM 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
#
F
FlyingQianMM 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
F
FlyingQianMM 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
F
FlyingQianMM 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
J
jiangjiajun 已提交
14 15 16 17 18 19 20

from __future__ import absolute_import
import os.path as osp
import numpy as np
import tqdm
import math
import cv2
21
from multiprocessing.pool import ThreadPool
J
jiangjiajun 已提交
22 23 24
import paddle.fluid as fluid
import paddlex.utils.logging as logging
import paddlex
25 26
from paddlex.cv.transforms import arrange_transforms
from paddlex.cv.datasets import GenerateMiniBatch
J
jiangjiajun 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
from collections import OrderedDict
from .base import BaseAPI
from .utils.seg_eval import ConfusionMatrix
from .utils.visualize import visualize_segmentation


class DeepLabv3p(BaseAPI):
    """实现DeepLabv3+网络的构建并进行训练、评估、预测和模型导出。

    Args:
        num_classes (int): 类别数。
        backbone (str): DeepLabv3+的backbone网络,实现特征图的计算,取值范围为['Xception65', 'Xception41',
            'MobileNetV2_x0.25', 'MobileNetV2_x0.5', 'MobileNetV2_x1.0', 'MobileNetV2_x1.5',
            'MobileNetV2_x2.0']。默认'MobileNetV2_x1.0'。
        output_stride (int): backbone 输出特征图相对于输入的下采样倍数,一般取值为8或16。默认16。
        aspp_with_sep_conv (bool):  在asspp模块是否采用separable convolutions。默认True。
        decoder_use_sep_conv (bool): decoder模块是否采用separable convolutions。默认True。
        encoder_with_aspp (bool): 是否在encoder阶段采用aspp模块。默认True。
        enable_decoder (bool): 是否使用decoder模块。默认True。
        use_bce_loss (bool): 是否使用bce loss作为网络的损失函数,只能用于两类分割。可与dice loss同时使用。默认False。
        use_dice_loss (bool): 是否使用dice loss作为网络的损失函数,只能用于两类分割,可与bce loss同时使用,
            当use_bce_loss和use_dice_loss都为False时,使用交叉熵损失函数。默认False。
        class_weight (list/str): 交叉熵损失函数各类损失的权重。当class_weight为list的时候,长度应为
            num_classes。当class_weight为str时, weight.lower()应为'dynamic',这时会根据每一轮各类像素的比重
            自行计算相应的权重,每一类的权重为:每类的比例 * num_classes。class_weight取默认值None时,各类的权重1,
            即平时使用的交叉熵损失函数。
        ignore_index (int): label上忽略的值,label为ignore_index的像素不参与损失函数的计算。默认255。
    Raises:
        ValueError: use_bce_loss或use_dice_loss为真且num_calsses > 2。
        ValueError: backbone取值不在['Xception65', 'Xception41', 'MobileNetV2_x0.25',
            'MobileNetV2_x0.5', 'MobileNetV2_x1.0', 'MobileNetV2_x1.5', 'MobileNetV2_x2.0']之内。
        ValueError: class_weight为list, 但长度不等于num_class。
                class_weight为str, 但class_weight.low()不等于dynamic。
        TypeError: class_weight不为None时,其类型不是list或str。
    """

    def __init__(self,
                 num_classes=2,
                 backbone='MobileNetV2_x1.0',
                 output_stride=16,
                 aspp_with_sep_conv=True,
                 decoder_use_sep_conv=True,
                 encoder_with_aspp=True,
                 enable_decoder=True,
                 use_bce_loss=False,
                 use_dice_loss=False,
                 class_weight=None,
74
                 ignore_index=255):
J
jiangjiajun 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
        self.init_params = locals()
        super(DeepLabv3p, self).__init__('segmenter')
        # dice_loss或bce_loss只适用两类分割中
        if num_classes > 2 and (use_bce_loss or use_dice_loss):
            raise ValueError(
                "dice loss and bce loss is only applicable to binary classfication"
            )

        self.output_stride = output_stride

        if backbone not in [
                'Xception65', 'Xception41', 'MobileNetV2_x0.25',
                'MobileNetV2_x0.5', 'MobileNetV2_x1.0', 'MobileNetV2_x1.5',
                'MobileNetV2_x2.0'
        ]:
            raise ValueError(
                "backbone: {} is set wrong. it should be one of "
                "('Xception65', 'Xception41', 'MobileNetV2_x0.25', 'MobileNetV2_x0.5',"
                " 'MobileNetV2_x1.0', 'MobileNetV2_x1.5', 'MobileNetV2_x2.0')".
                format(backbone))

        if class_weight is not None:
            if isinstance(class_weight, list):
                if len(class_weight) != num_classes:
                    raise ValueError(
                        "Length of class_weight should be equal to number of classes"
                    )
            elif isinstance(class_weight, str):
                if class_weight.lower() != 'dynamic':
                    raise ValueError(
                        "if class_weight is string, must be dynamic!")
            else:
                raise TypeError(
                    'Expect class_weight is a list or string but receive {}'.
                    format(type(class_weight)))

        self.backbone = backbone
        self.num_classes = num_classes
        self.use_bce_loss = use_bce_loss
        self.use_dice_loss = use_dice_loss
        self.class_weight = class_weight
        self.ignore_index = ignore_index
        self.aspp_with_sep_conv = aspp_with_sep_conv
        self.decoder_use_sep_conv = decoder_use_sep_conv
        self.encoder_with_aspp = encoder_with_aspp
        self.enable_decoder = enable_decoder
        self.labels = None
        self.sync_bn = True
123
        self.fixed_input_shape = None
J
jiangjiajun 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

    def _get_backbone(self, backbone):
        def mobilenetv2(backbone):
            # backbone: xception结构配置
            # output_stride:下采样倍数
            # end_points: mobilenetv2的block数
            # decode_point: 从mobilenetv2中引出分支所在block数, 作为decoder输入
            if '0.25' in backbone:
                scale = 0.25
            elif '0.5' in backbone:
                scale = 0.5
            elif '1.0' in backbone:
                scale = 1.0
            elif '1.5' in backbone:
                scale = 1.5
            elif '2.0' in backbone:
                scale = 2.0
            end_points = 18
            decode_points = 4
            return paddlex.cv.nets.MobileNetV2(
                scale=scale,
                output_stride=self.output_stride,
                end_points=end_points,
                decode_points=decode_points)

        def xception(backbone):
            # decode_point: 从Xception中引出分支所在block数,作为decoder输入
            # end_point:Xception的block数
            if '65' in backbone:
                decode_points = 2
                end_points = 21
                layers = 65
            if '41' in backbone:
                decode_points = 2
                end_points = 13
                layers = 41
            if '71' in backbone:
                decode_points = 3
                end_points = 23
                layers = 71
            return paddlex.cv.nets.Xception(
                layers=layers,
                output_stride=self.output_stride,
                end_points=end_points,
                decode_points=decode_points)

        if 'Xception' in backbone:
            return xception(backbone)
        elif 'MobileNetV2' in backbone:
            return mobilenetv2(backbone)

    def build_net(self, mode='train'):
        model = paddlex.cv.nets.segmentation.DeepLabv3p(
            self.num_classes,
            mode=mode,
            backbone=self._get_backbone(self.backbone),
            output_stride=self.output_stride,
            aspp_with_sep_conv=self.aspp_with_sep_conv,
            decoder_use_sep_conv=self.decoder_use_sep_conv,
            encoder_with_aspp=self.encoder_with_aspp,
            enable_decoder=self.enable_decoder,
            use_bce_loss=self.use_bce_loss,
            use_dice_loss=self.use_dice_loss,
            class_weight=self.class_weight,
C
Channingss 已提交
188
            ignore_index=self.ignore_index,
189
            fixed_input_shape=self.fixed_input_shape)
J
jiangjiajun 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
        inputs = model.generate_inputs()
        model_out = model.build_net(inputs)
        outputs = OrderedDict()
        if mode == 'train':
            self.optimizer.minimize(model_out)
            outputs['loss'] = model_out
        else:
            outputs['pred'] = model_out[0]
            outputs['logit'] = model_out[1]
        return inputs, outputs

    def default_optimizer(self,
                          learning_rate,
                          num_epochs,
                          num_steps_each_epoch,
                          lr_decay_power=0.9):
        decay_step = num_epochs * num_steps_each_epoch
        lr_decay = fluid.layers.polynomial_decay(
            learning_rate,
            decay_step,
            end_learning_rate=0,
            power=lr_decay_power)
        optimizer = fluid.optimizer.Momentum(
            lr_decay,
            momentum=0.9,
            regularization=fluid.regularizer.L2Decay(
                regularization_coeff=4e-05))
        return optimizer

    def train(self,
              num_epochs,
              train_dataset,
              train_batch_size=2,
              eval_dataset=None,
              save_interval_epochs=1,
              log_interval_steps=2,
              save_dir='output',
              pretrain_weights='IMAGENET',
              optimizer=None,
              learning_rate=0.01,
              lr_decay_power=0.9,
              use_vdl=False,
              sensitivities_file=None,
F
FlyingQianMM 已提交
233 234
              eval_metric_loss=0.05,
              early_stop=False,
235 236
              early_stop_patience=5,
              resume_checkpoint=None):
J
jiangjiajun 已提交
237 238 239 240 241 242 243 244 245 246 247
        """训练。

        Args:
            num_epochs (int): 训练迭代轮数。
            train_dataset (paddlex.datasets): 训练数据读取器。
            train_batch_size (int): 训练数据batch大小。同时作为验证数据batch大小。默认为2。
            eval_dataset (paddlex.datasets): 评估数据读取器。
            save_interval_epochs (int): 模型保存间隔(单位:迭代轮数)。默认为1。
            log_interval_steps (int): 训练日志输出间隔(单位:迭代次数)。默认为2。
            save_dir (str): 模型保存路径。默认'output'。
            pretrain_weights (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',
248 249 250
                则自动下载在ImageNet图片数据上预训练的模型权重;若为字符串'COCO',
                则自动下载在COCO数据集上预训练的模型权重;若为字符串'CITYSCAPES',
                则自动下载在CITYSCAPES数据集上预训练的模型权重;若为None,则不使用预训练模型。默认'IMAGENET。
J
jiangjiajun 已提交
251 252 253 254 255 256
            optimizer (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认的优化器:使用
                fluid.optimizer.Momentum优化方法,polynomial的学习率衰减策略。
            learning_rate (float): 默认优化器的初始学习率。默认0.01。
            lr_decay_power (float): 默认优化器学习率衰减指数。默认0.9。
            use_vdl (bool): 是否使用VisualDL进行可视化。默认False。
            sensitivities_file (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',
F
FlyingQianMM 已提交
257
                则自动下载在Cityscapes图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
J
jiangjiajun 已提交
258
            eval_metric_loss (float): 可容忍的精度损失。默认为0.05。
F
FlyingQianMM 已提交
259 260 261
            early_stop (bool): 是否使用提前终止训练策略。默认值为False。
            early_stop_patience (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内
                连续下降或持平,则终止训练。默认值为5。
262
            resume_checkpoint (str): 恢复训练时指定上次训练保存的模型路径。若为None,则不会恢复训练。默认值为None。
J
jiangjiajun 已提交
263 264 265 266 267

        Raises:
            ValueError: 模型从inference model进行加载。
        """
        if not self.trainable:
J
jiangjiajun 已提交
268
            raise ValueError("Model is not trainable from load_model method.")
J
jiangjiajun 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283

        self.labels = train_dataset.labels

        if optimizer is None:
            num_steps_each_epoch = train_dataset.num_samples // train_batch_size
            optimizer = self.default_optimizer(
                learning_rate=learning_rate,
                num_epochs=num_epochs,
                num_steps_each_epoch=num_steps_each_epoch,
                lr_decay_power=lr_decay_power)

        self.optimizer = optimizer
        # 构建训练、验证、预测网络
        self.build_program()
        # 初始化网络权重
284 285 286 287 288 289 290
        self.net_initialize(
            startup_prog=fluid.default_startup_program(),
            pretrain_weights=pretrain_weights,
            save_dir=save_dir,
            sensitivities_file=sensitivities_file,
            eval_metric_loss=eval_metric_loss,
            resume_checkpoint=resume_checkpoint)
J
jiangjiajun 已提交
291 292 293 294 295 296 297 298 299
        # 训练
        self.train_loop(
            num_epochs=num_epochs,
            train_dataset=train_dataset,
            train_batch_size=train_batch_size,
            eval_dataset=eval_dataset,
            save_interval_epochs=save_interval_epochs,
            log_interval_steps=log_interval_steps,
            save_dir=save_dir,
F
FlyingQianMM 已提交
300 301 302
            use_vdl=use_vdl,
            early_stop=early_stop,
            early_stop_patience=early_stop_patience)
J
jiangjiajun 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322

    def evaluate(self,
                 eval_dataset,
                 batch_size=1,
                 epoch_id=None,
                 return_details=False):
        """评估。

        Args:
            eval_dataset (paddlex.datasets): 评估数据读取器。
            batch_size (int): 评估时的batch大小。默认1。
            epoch_id (int): 当前评估模型所在的训练轮数。
            return_details (bool): 是否返回详细信息。默认False。

        Returns:
            dict: 当return_details为False时,返回dict。包含关键字:'miou'、'category_iou'、'macc'、
                'category_acc'和'kappa',分别表示平均iou、各类别iou、平均准确率、各类别准确率和kappa系数。
            tuple (metrics, eval_details):当return_details为True时,增加返回dict (eval_details),
                包含关键字:'confusion_matrix',表示评估的混淆矩阵。
        """
323 324 325 326 327
        arrange_transforms(
            model_type=self.model_type,
            class_name=self.__class__.__name__,
            transforms=eval_dataset.transforms,
            mode='eval')
J
jiangjiajun 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341
        total_steps = math.ceil(eval_dataset.num_samples * 1.0 / batch_size)
        conf_mat = ConfusionMatrix(self.num_classes, streaming=True)
        data_generator = eval_dataset.generator(
            batch_size=batch_size, drop_last=False)
        if not hasattr(self, 'parallel_test_prog'):
            self.parallel_test_prog = fluid.CompiledProgram(
                self.test_prog).with_data_parallel(
                    share_vars_from=self.parallel_train_prog)
        logging.info(
            "Start to evaluating(total_samples={}, total_steps={})...".format(
                eval_dataset.num_samples, total_steps))
        for step, data in tqdm.tqdm(
                enumerate(data_generator()), total=total_steps):
            images = np.array([d[0] for d in data])
J
jiangjiajun 已提交
342 343 344 345 346 347

            _, _, im_h, im_w = images.shape
            labels = list()
            for d in data:
                padding_label = np.zeros(
                    (1, im_h, im_w)).astype('int64') + self.ignore_index
J
jiangjiajun 已提交
348 349
                _, label_h, label_w = d[1].shape
                padding_label[:, :label_h, :label_w] = d[1]
J
jiangjiajun 已提交
350 351 352
                labels.append(padding_label)
            labels = np.array(labels)

J
jiangjiajun 已提交
353 354 355 356 357 358
            num_samples = images.shape[0]
            if num_samples < batch_size:
                num_pad_samples = batch_size - num_samples
                pad_images = np.tile(images[0:1], (num_pad_samples, 1, 1, 1))
                images = np.concatenate([images, pad_images])
            feed_data = {'image': images}
J
jiangjiajun 已提交
359 360 361 362
            outputs = self.exe.run(self.parallel_test_prog,
                                   feed=feed_data,
                                   fetch_list=list(self.test_outputs.values()),
                                   return_numpy=True)
J
jiangjiajun 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
            pred = outputs[0]
            if num_samples < batch_size:
                pred = pred[0:num_samples]

            mask = labels != self.ignore_index
            conf_mat.calculate(pred=pred, label=labels, ignore=mask)
            _, iou = conf_mat.mean_iou()

            logging.debug("[EVAL] Epoch={}, Step={}/{}, iou={}".format(
                epoch_id, step + 1, total_steps, iou))

        category_iou, miou = conf_mat.mean_iou()
        category_acc, macc = conf_mat.accuracy()

        metrics = OrderedDict(
            zip(['miou', 'category_iou', 'macc', 'category_acc', 'kappa'],
J
jiangjiajun 已提交
379
                [miou, category_iou, macc, category_acc, conf_mat.kappa()]))
J
jiangjiajun 已提交
380 381 382 383 384 385 386
        if return_details:
            eval_details = {
                'confusion_matrix': conf_mat.confusion_matrix.tolist()
            }
            return metrics, eval_details
        return metrics

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
    @staticmethod
    def _preprocess(images, transforms, model_type, class_name, thread_num=1):
        arrange_transforms(
            model_type=model_type,
            class_name=class_name,
            transforms=transforms,
            mode='test')
        pool = ThreadPool(thread_num)
        batch_data = pool.map(transforms, images)
        pool.close()
        pool.join()
        padding_batch = GenerateMiniBatch(batch_data)
        im = np.array(
            [data[0] for data in padding_batch],
            dtype=padding_batch[0][0].dtype)
        im_info = [data[1] for data in padding_batch]
        return im, im_info

    @staticmethod
    def _postprocess(results, im_info):
        pred_list = list()
        logit_list = list()
        for i, (pred, logit) in enumerate(zip(results[0], results[1])):
            pred = pred.astype('uint8')
            pred = np.squeeze(pred).astype('uint8')
            logit = np.transpose(logit, (1, 2, 0))
            for info in im_info[i][::-1]:
                if info[0] == 'resize':
                    w, h = info[1][1], info[1][0]
                    pred = cv2.resize(pred, (w, h), cv2.INTER_NEAREST)
                    logit = cv2.resize(logit, (w, h), cv2.INTER_LINEAR)
                elif info[0] == 'padding':
                    w, h = info[1][1], info[1][0]
                    pred = pred[0:h, 0:w]
                    logit = logit[0:h, 0:w, :]
                else:
                    raise Exception("Unexpected info '{}' in im_info".format(
                        info[0]))
            pred_list.append(pred)
            logit_list.append(logit)

        preds = list()
        for pred, logit in zip(pred_list, logit_list):
            preds.append({'label_map': pred, 'score_map': logit})
        return preds

    def predict(self, img_file, transforms=None):
J
jiangjiajun 已提交
434 435
        """预测。
        Args:
436
            img_file(str|np.ndarray): 预测图像路径,或者是解码后的排列格式为(H, W, C)且类型为float32且为BGR格式的数组。
J
jiangjiajun 已提交
437 438 439 440 441 442 443 444 445
            transforms(paddlex.cv.transforms): 数据预处理操作。

        Returns:
            dict: 包含关键字'label_map'和'score_map', 'label_map'存储预测结果灰度图,
                像素值表示对应的类别,'score_map'存储各类别的概率,shape=(h, w, num_classes)
        """

        if transforms is None and not hasattr(self, 'test_transforms'):
            raise Exception("transforms need to be defined, now is None.")
446 447
        if isinstance(img_file, (str, np.ndarray)):
            images = [img_file]
J
jiangjiajun 已提交
448
        else:
449 450 451 452 453 454 455
            raise Exception("img_file must be str/np.ndarray")

        if transforms is None:
            transforms = self.test_transforms
        im, im_info = DeepLabv3p._preprocess(
            images, transforms, self.model_type, self.__class__.__name__)

J
jiangjiajun 已提交
456 457
        result = self.exe.run(self.test_prog,
                              feed={'image': im},
J
jiangjiajun 已提交
458 459
                              fetch_list=list(self.test_outputs.values()),
                              use_program_cache=True)
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492

        preds = DeepLabv3p._postprocess(result, im_info)
        return preds[0]

    def batch_predict(self, img_file_list, transforms=None, thread_num=2):
        """预测。
        Args:
            img_file_list(list|tuple): 对列表(或元组)中的图像同时进行预测,列表中的元素可以是图像路径
                也可以是解码后的排列格式为(H,W,C)且类型为float32且为BGR格式的数组。
            transforms(paddlex.cv.transforms): 数据预处理操作。

        Returns:
            list: 每个元素都为列表,表示各图像的预测结果。各图像的预测结果用字典表示,包含关键字'label_map'和'score_map', 'label_map'存储预测结果灰度图,
                像素值表示对应的类别,'score_map'存储各类别的概率,shape=(h, w, num_classes)
        """

        if transforms is None and not hasattr(self, 'test_transforms'):
            raise Exception("transforms need to be defined, now is None.")
        if not isinstance(img_file_list, (list, tuple)):
            raise Exception("im_file must be list/tuple")
        if transforms is None:
            transforms = self.test_transforms
        im, im_info = DeepLabv3p._preprocess(
            img_file_list, transforms, self.model_type,
            self.__class__.__name__, thread_num)

        result = self.exe.run(self.test_prog,
                              feed={'image': im},
                              fetch_list=list(self.test_outputs.values()),
                              use_program_cache=True)

        preds = DeepLabv3p._postprocess(result, im_info)
        return preds