deeplabv3p.py 19.0 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
import os.path as osp
import numpy as np
import tqdm
import math
import cv2
import paddle.fluid as fluid
import paddlex.utils.logging as logging
import paddlex
from collections import OrderedDict
from .base import BaseAPI
from .utils.seg_eval import ConfusionMatrix
from .utils.visualize import visualize_segmentation


class DeepLabv3p(BaseAPI):
    """实现DeepLabv3+网络的构建并进行训练、评估、预测和模型导出。

    Args:
        num_classes (int): 类别数。
        backbone (str): DeepLabv3+的backbone网络,实现特征图的计算,取值范围为['Xception65', 'Xception41',
            'MobileNetV2_x0.25', 'MobileNetV2_x0.5', 'MobileNetV2_x1.0', 'MobileNetV2_x1.5',
            'MobileNetV2_x2.0']。默认'MobileNetV2_x1.0'。
        output_stride (int): backbone 输出特征图相对于输入的下采样倍数,一般取值为8或16。默认16。
        aspp_with_sep_conv (bool):  在asspp模块是否采用separable convolutions。默认True。
        decoder_use_sep_conv (bool): decoder模块是否采用separable convolutions。默认True。
        encoder_with_aspp (bool): 是否在encoder阶段采用aspp模块。默认True。
        enable_decoder (bool): 是否使用decoder模块。默认True。
        use_bce_loss (bool): 是否使用bce loss作为网络的损失函数,只能用于两类分割。可与dice loss同时使用。默认False。
        use_dice_loss (bool): 是否使用dice loss作为网络的损失函数,只能用于两类分割,可与bce loss同时使用,
            当use_bce_loss和use_dice_loss都为False时,使用交叉熵损失函数。默认False。
        class_weight (list/str): 交叉熵损失函数各类损失的权重。当class_weight为list的时候,长度应为
            num_classes。当class_weight为str时, weight.lower()应为'dynamic',这时会根据每一轮各类像素的比重
            自行计算相应的权重,每一类的权重为:每类的比例 * num_classes。class_weight取默认值None时,各类的权重1,
            即平时使用的交叉熵损失函数。
        ignore_index (int): label上忽略的值,label为ignore_index的像素不参与损失函数的计算。默认255。
    Raises:
        ValueError: use_bce_loss或use_dice_loss为真且num_calsses > 2。
        ValueError: backbone取值不在['Xception65', 'Xception41', 'MobileNetV2_x0.25',
            'MobileNetV2_x0.5', 'MobileNetV2_x1.0', 'MobileNetV2_x1.5', 'MobileNetV2_x2.0']之内。
        ValueError: class_weight为list, 但长度不等于num_class。
                class_weight为str, 但class_weight.low()不等于dynamic。
        TypeError: class_weight不为None时,其类型不是list或str。
    """

    def __init__(self,
                 num_classes=2,
                 backbone='MobileNetV2_x1.0',
                 output_stride=16,
                 aspp_with_sep_conv=True,
                 decoder_use_sep_conv=True,
                 encoder_with_aspp=True,
                 enable_decoder=True,
                 use_bce_loss=False,
                 use_dice_loss=False,
                 class_weight=None,
71
                 ignore_index=255):
J
jiangjiajun 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
        self.init_params = locals()
        super(DeepLabv3p, self).__init__('segmenter')
        # dice_loss或bce_loss只适用两类分割中
        if num_classes > 2 and (use_bce_loss or use_dice_loss):
            raise ValueError(
                "dice loss and bce loss is only applicable to binary classfication"
            )

        self.output_stride = output_stride

        if backbone not in [
                'Xception65', 'Xception41', 'MobileNetV2_x0.25',
                'MobileNetV2_x0.5', 'MobileNetV2_x1.0', 'MobileNetV2_x1.5',
                'MobileNetV2_x2.0'
        ]:
            raise ValueError(
                "backbone: {} is set wrong. it should be one of "
                "('Xception65', 'Xception41', 'MobileNetV2_x0.25', 'MobileNetV2_x0.5',"
                " 'MobileNetV2_x1.0', 'MobileNetV2_x1.5', 'MobileNetV2_x2.0')".
                format(backbone))

        if class_weight is not None:
            if isinstance(class_weight, list):
                if len(class_weight) != num_classes:
                    raise ValueError(
                        "Length of class_weight should be equal to number of classes"
                    )
            elif isinstance(class_weight, str):
                if class_weight.lower() != 'dynamic':
                    raise ValueError(
                        "if class_weight is string, must be dynamic!")
            else:
                raise TypeError(
                    'Expect class_weight is a list or string but receive {}'.
                    format(type(class_weight)))

        self.backbone = backbone
        self.num_classes = num_classes
        self.use_bce_loss = use_bce_loss
        self.use_dice_loss = use_dice_loss
        self.class_weight = class_weight
        self.ignore_index = ignore_index
        self.aspp_with_sep_conv = aspp_with_sep_conv
        self.decoder_use_sep_conv = decoder_use_sep_conv
        self.encoder_with_aspp = encoder_with_aspp
        self.enable_decoder = enable_decoder
        self.labels = None
        self.sync_bn = True
120
        self.fixed_input_shape = None
J
jiangjiajun 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184

    def _get_backbone(self, backbone):
        def mobilenetv2(backbone):
            # backbone: xception结构配置
            # output_stride:下采样倍数
            # end_points: mobilenetv2的block数
            # decode_point: 从mobilenetv2中引出分支所在block数, 作为decoder输入
            if '0.25' in backbone:
                scale = 0.25
            elif '0.5' in backbone:
                scale = 0.5
            elif '1.0' in backbone:
                scale = 1.0
            elif '1.5' in backbone:
                scale = 1.5
            elif '2.0' in backbone:
                scale = 2.0
            end_points = 18
            decode_points = 4
            return paddlex.cv.nets.MobileNetV2(
                scale=scale,
                output_stride=self.output_stride,
                end_points=end_points,
                decode_points=decode_points)

        def xception(backbone):
            # decode_point: 从Xception中引出分支所在block数,作为decoder输入
            # end_point:Xception的block数
            if '65' in backbone:
                decode_points = 2
                end_points = 21
                layers = 65
            if '41' in backbone:
                decode_points = 2
                end_points = 13
                layers = 41
            if '71' in backbone:
                decode_points = 3
                end_points = 23
                layers = 71
            return paddlex.cv.nets.Xception(
                layers=layers,
                output_stride=self.output_stride,
                end_points=end_points,
                decode_points=decode_points)

        if 'Xception' in backbone:
            return xception(backbone)
        elif 'MobileNetV2' in backbone:
            return mobilenetv2(backbone)

    def build_net(self, mode='train'):
        model = paddlex.cv.nets.segmentation.DeepLabv3p(
            self.num_classes,
            mode=mode,
            backbone=self._get_backbone(self.backbone),
            output_stride=self.output_stride,
            aspp_with_sep_conv=self.aspp_with_sep_conv,
            decoder_use_sep_conv=self.decoder_use_sep_conv,
            encoder_with_aspp=self.encoder_with_aspp,
            enable_decoder=self.enable_decoder,
            use_bce_loss=self.use_bce_loss,
            use_dice_loss=self.use_dice_loss,
            class_weight=self.class_weight,
C
Channingss 已提交
185
            ignore_index=self.ignore_index,
186
            fixed_input_shape=self.fixed_input_shape)
J
jiangjiajun 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
        inputs = model.generate_inputs()
        model_out = model.build_net(inputs)
        outputs = OrderedDict()
        if mode == 'train':
            self.optimizer.minimize(model_out)
            outputs['loss'] = model_out
        else:
            outputs['pred'] = model_out[0]
            outputs['logit'] = model_out[1]
        return inputs, outputs

    def default_optimizer(self,
                          learning_rate,
                          num_epochs,
                          num_steps_each_epoch,
                          lr_decay_power=0.9):
        decay_step = num_epochs * num_steps_each_epoch
        lr_decay = fluid.layers.polynomial_decay(
            learning_rate,
            decay_step,
            end_learning_rate=0,
            power=lr_decay_power)
        optimizer = fluid.optimizer.Momentum(
            lr_decay,
            momentum=0.9,
            regularization=fluid.regularizer.L2Decay(
                regularization_coeff=4e-05))
        return optimizer

    def train(self,
              num_epochs,
              train_dataset,
              train_batch_size=2,
              eval_dataset=None,
              save_interval_epochs=1,
              log_interval_steps=2,
              save_dir='output',
              pretrain_weights='IMAGENET',
              optimizer=None,
              learning_rate=0.01,
              lr_decay_power=0.9,
              use_vdl=False,
              sensitivities_file=None,
F
FlyingQianMM 已提交
230 231
              eval_metric_loss=0.05,
              early_stop=False,
232 233
              early_stop_patience=5,
              resume_checkpoint=None):
J
jiangjiajun 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
        """训练。

        Args:
            num_epochs (int): 训练迭代轮数。
            train_dataset (paddlex.datasets): 训练数据读取器。
            train_batch_size (int): 训练数据batch大小。同时作为验证数据batch大小。默认为2。
            eval_dataset (paddlex.datasets): 评估数据读取器。
            save_interval_epochs (int): 模型保存间隔(单位:迭代轮数)。默认为1。
            log_interval_steps (int): 训练日志输出间隔(单位:迭代次数)。默认为2。
            save_dir (str): 模型保存路径。默认'output'。
            pretrain_weights (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',
                则自动下载在ImageNet图片数据上预训练的模型权重;若为None,则不使用预训练模型。默认'IMAGENET。
            optimizer (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认的优化器:使用
                fluid.optimizer.Momentum优化方法,polynomial的学习率衰减策略。
            learning_rate (float): 默认优化器的初始学习率。默认0.01。
            lr_decay_power (float): 默认优化器学习率衰减指数。默认0.9。
            use_vdl (bool): 是否使用VisualDL进行可视化。默认False。
            sensitivities_file (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',
                则自动下载在ImageNet图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
            eval_metric_loss (float): 可容忍的精度损失。默认为0.05。
F
FlyingQianMM 已提交
254 255 256
            early_stop (bool): 是否使用提前终止训练策略。默认值为False。
            early_stop_patience (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内
                连续下降或持平,则终止训练。默认值为5。
257
            resume_checkpoint (str): 恢复训练时指定上次训练保存的模型路径。若为None,则不会恢复训练。默认值为None。
J
jiangjiajun 已提交
258 259 260 261 262

        Raises:
            ValueError: 模型从inference model进行加载。
        """
        if not self.trainable:
J
jiangjiajun 已提交
263
            raise ValueError("Model is not trainable from load_model method.")
J
jiangjiajun 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278

        self.labels = train_dataset.labels

        if optimizer is None:
            num_steps_each_epoch = train_dataset.num_samples // train_batch_size
            optimizer = self.default_optimizer(
                learning_rate=learning_rate,
                num_epochs=num_epochs,
                num_steps_each_epoch=num_steps_each_epoch,
                lr_decay_power=lr_decay_power)

        self.optimizer = optimizer
        # 构建训练、验证、预测网络
        self.build_program()
        # 初始化网络权重
279 280 281 282 283 284 285
        self.net_initialize(
            startup_prog=fluid.default_startup_program(),
            pretrain_weights=pretrain_weights,
            save_dir=save_dir,
            sensitivities_file=sensitivities_file,
            eval_metric_loss=eval_metric_loss,
            resume_checkpoint=resume_checkpoint)
J
jiangjiajun 已提交
286 287 288 289 290 291 292 293 294
        # 训练
        self.train_loop(
            num_epochs=num_epochs,
            train_dataset=train_dataset,
            train_batch_size=train_batch_size,
            eval_dataset=eval_dataset,
            save_interval_epochs=save_interval_epochs,
            log_interval_steps=log_interval_steps,
            save_dir=save_dir,
F
FlyingQianMM 已提交
295 296 297
            use_vdl=use_vdl,
            early_stop=early_stop,
            early_stop_patience=early_stop_patience)
J
jiangjiajun 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333

    def evaluate(self,
                 eval_dataset,
                 batch_size=1,
                 epoch_id=None,
                 return_details=False):
        """评估。

        Args:
            eval_dataset (paddlex.datasets): 评估数据读取器。
            batch_size (int): 评估时的batch大小。默认1。
            epoch_id (int): 当前评估模型所在的训练轮数。
            return_details (bool): 是否返回详细信息。默认False。

        Returns:
            dict: 当return_details为False时,返回dict。包含关键字:'miou'、'category_iou'、'macc'、
                'category_acc'和'kappa',分别表示平均iou、各类别iou、平均准确率、各类别准确率和kappa系数。
            tuple (metrics, eval_details):当return_details为True时,增加返回dict (eval_details),
                包含关键字:'confusion_matrix',表示评估的混淆矩阵。
        """
        self.arrange_transforms(
            transforms=eval_dataset.transforms, mode='eval')
        total_steps = math.ceil(eval_dataset.num_samples * 1.0 / batch_size)
        conf_mat = ConfusionMatrix(self.num_classes, streaming=True)
        data_generator = eval_dataset.generator(
            batch_size=batch_size, drop_last=False)
        if not hasattr(self, 'parallel_test_prog'):
            self.parallel_test_prog = fluid.CompiledProgram(
                self.test_prog).with_data_parallel(
                    share_vars_from=self.parallel_train_prog)
        logging.info(
            "Start to evaluating(total_samples={}, total_steps={})...".format(
                eval_dataset.num_samples, total_steps))
        for step, data in tqdm.tqdm(
                enumerate(data_generator()), total=total_steps):
            images = np.array([d[0] for d in data])
J
jiangjiajun 已提交
334 335 336 337 338 339

            _, _, im_h, im_w = images.shape
            labels = list()
            for d in data:
                padding_label = np.zeros(
                    (1, im_h, im_w)).astype('int64') + self.ignore_index
J
jiangjiajun 已提交
340 341
                _, label_h, label_w = d[1].shape
                padding_label[:, :label_h, :label_w] = d[1]
J
jiangjiajun 已提交
342 343 344
                labels.append(padding_label)
            labels = np.array(labels)

J
jiangjiajun 已提交
345 346 347 348 349 350
            num_samples = images.shape[0]
            if num_samples < batch_size:
                num_pad_samples = batch_size - num_samples
                pad_images = np.tile(images[0:1], (num_pad_samples, 1, 1, 1))
                images = np.concatenate([images, pad_images])
            feed_data = {'image': images}
J
jiangjiajun 已提交
351 352 353 354
            outputs = self.exe.run(self.parallel_test_prog,
                                   feed=feed_data,
                                   fetch_list=list(self.test_outputs.values()),
                                   return_numpy=True)
J
jiangjiajun 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
            pred = outputs[0]
            if num_samples < batch_size:
                pred = pred[0:num_samples]

            mask = labels != self.ignore_index
            conf_mat.calculate(pred=pred, label=labels, ignore=mask)
            _, iou = conf_mat.mean_iou()

            logging.debug("[EVAL] Epoch={}, Step={}/{}, iou={}".format(
                epoch_id, step + 1, total_steps, iou))

        category_iou, miou = conf_mat.mean_iou()
        category_acc, macc = conf_mat.accuracy()

        metrics = OrderedDict(
            zip(['miou', 'category_iou', 'macc', 'category_acc', 'kappa'],
J
jiangjiajun 已提交
371
                [miou, category_iou, macc, category_acc, conf_mat.kappa()]))
J
jiangjiajun 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
        if return_details:
            eval_details = {
                'confusion_matrix': conf_mat.confusion_matrix.tolist()
            }
            return metrics, eval_details
        return metrics

    def predict(self, im_file, transforms=None):
        """预测。
        Args:
            img_file(str): 预测图像路径。
            transforms(paddlex.cv.transforms): 数据预处理操作。

        Returns:
            dict: 包含关键字'label_map'和'score_map', 'label_map'存储预测结果灰度图,
                像素值表示对应的类别,'score_map'存储各类别的概率,shape=(h, w, num_classes)
        """

        if transforms is None and not hasattr(self, 'test_transforms'):
            raise Exception("transforms need to be defined, now is None.")
        if transforms is not None:
            self.arrange_transforms(transforms=transforms, mode='test')
            im, im_info = transforms(im_file)
        else:
            self.arrange_transforms(
                transforms=self.test_transforms, mode='test')
            im, im_info = self.test_transforms(im_file)
        im = np.expand_dims(im, axis=0)
J
jiangjiajun 已提交
400 401
        result = self.exe.run(self.test_prog,
                              feed={'image': im},
J
jiangjiajun 已提交
402 403
                              fetch_list=list(self.test_outputs.values()),
                              use_program_cache=True)
J
jiangjiajun 已提交
404 405
        pred = result[0]
        pred = np.squeeze(pred).astype('uint8')
C
chenguowei01 已提交
406 407 408
        logit = result[1]
        logit = np.squeeze(logit)
        logit = np.transpose(logit, (1, 2, 0))
J
jiangjiajun 已提交
409 410 411
        for info in im_info[::-1]:
            if info[0] == 'resize':
                w, h = info[1][1], info[1][0]
J
jiangjiajun 已提交
412
                pred = cv2.resize(pred, (w, h), cv2.INTER_NEAREST)
C
chenguowei01 已提交
413
                logit = cv2.resize(logit, (w, h), cv2.INTER_LINEAR)
J
jiangjiajun 已提交
414 415
            elif info[0] == 'padding':
                w, h = info[1][1], info[1][0]
J
jiangjiajun 已提交
416
                pred = pred[0:h, 0:w]
C
chenguowei01 已提交
417
                logit = logit[0:h, 0:w, :]
J
jiangjiajun 已提交
418
            else:
J
jiangjiajun 已提交
419 420
                raise Exception("Unexpected info '{}' in im_info".format(info[
                    0]))
C
chenguowei01 已提交
421
        return {'label_map': pred, 'score_map': logit}