load_model.py 8.1 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import yaml
import os.path as osp
import six
import copy
from collections import OrderedDict
import paddle.fluid as fluid
from paddle.fluid.framework import Parameter
import paddlex
import paddlex.utils.logging as logging


C
Channingss 已提交
26
def load_model(model_dir, fixed_input_shape=None):
J
jiangjiajun 已提交
27 28 29 30
    if not osp.exists(osp.join(model_dir, "model.yml")):
        raise Exception("There's not model.yml in {}".format(model_dir))
    with open(osp.join(model_dir, "model.yml")) as f:
        info = yaml.load(f.read(), Loader=yaml.Loader)
31 32 33 34 35 36

    if 'status' in info:
        status = info['status']
    elif 'save_method' in info:
        # 兼容老版本PaddleX
        status = info['save_method']
J
jiangjiajun 已提交
37 38 39 40 41 42 43 44 45 46

    if not hasattr(paddlex.cv.models, info['Model']):
        raise Exception("There's no attribute {} in paddlex.cv.models".format(
            info['Model']))

    if info['_Attributes']['model_type'] == 'classifier':
        model = paddlex.cv.models.BaseClassifier(**info['_init_params'])
    else:
        model = getattr(paddlex.cv.models,
                        info['Model'])(**info['_init_params'])
47
    model.fixed_input_shape = fixed_input_shape
J
jiangjiajun 已提交
48
    if status == "Normal" or \
49
            status == "Prune" or status == "fluid.save":
J
jiangjiajun 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
        startup_prog = fluid.Program()
        model.test_prog = fluid.Program()
        with fluid.program_guard(model.test_prog, startup_prog):
            with fluid.unique_name.guard():
                model.test_inputs, model.test_outputs = model.build_net(
                    mode='test')
        model.test_prog = model.test_prog.clone(for_test=True)
        model.exe.run(startup_prog)
        if status == "Prune":
            from .slim.prune import update_program
            model.test_prog = update_program(model.test_prog, model_dir,
                                             model.places[0])
        import pickle
        with open(osp.join(model_dir, 'model.pdparams'), 'rb') as f:
            load_dict = pickle.load(f)
        fluid.io.set_program_state(model.test_prog, load_dict)

    elif status == "Infer" or \
68
            status == "Quant" or status == "fluid.save_inference_model":
J
jiangjiajun 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81
        [prog, input_names, outputs] = fluid.io.load_inference_model(
            model_dir, model.exe, params_filename='__params__')
        model.test_prog = prog
        test_outputs_info = info['_ModelInputsOutputs']['test_outputs']
        model.test_inputs = OrderedDict()
        model.test_outputs = OrderedDict()
        for name in input_names:
            model.test_inputs[name] = model.test_prog.global_block().var(name)
        for i, out in enumerate(outputs):
            var_desc = test_outputs_info[i]
            model.test_outputs[var_desc[0]] = out
    if 'Transforms' in info:
        transforms_mode = info.get('TransformsMode', 'RGB')
82 83
        # 固定模型的输入shape
        fix_input_shape(info, fixed_input_shape=fixed_input_shape)
J
jiangjiajun 已提交
84 85 86 87
        if transforms_mode == 'RGB':
            to_rgb = True
        else:
            to_rgb = False
88 89 90 91 92 93 94 95 96
        if 'BatchTransforms' in info:
            # 兼容老版本PaddleX模型
            model.test_transforms = build_transforms_v1(
                model.model_type, info['Transforms'], info['BatchTransforms'])
            model.eval_transforms = copy.deepcopy(model.test_transforms)
        else:
            model.test_transforms = build_transforms(
                model.model_type, info['Transforms'], to_rgb)
            model.eval_transforms = copy.deepcopy(model.test_transforms)
J
jiangjiajun 已提交
97 98 99 100 101 102 103

    if '_Attributes' in info:
        for k, v in info['_Attributes'].items():
            if k in model.__dict__:
                model.__dict__[k] = v

    logging.info("Model[{}] loaded.".format(info['Model']))
J
jiangjiajun 已提交
104
    model.trainable = False
J
jiangjiajun 已提交
105 106 107
    return model


108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
def fix_input_shape(info, fixed_input_shape=None):
    if fixed_input_shape is not None:
        resize = {'ResizeByShort': {}}
        padding = {'Padding': {}}
        if info['_Attributes']['model_type'] == 'classifier':
            crop_size = 0
            for transform in info['Transforms']:
                if 'CenterCrop' in transform:
                    crop_size = transform['CenterCrop']['crop_size']
                    break
            assert crop_size == fixed_input_shape[
                0], "fixed_input_shape must == CenterCrop:crop_size:{}".format(
                    crop_size)
            assert crop_size == fixed_input_shape[
                1], "fixed_input_shape must == CenterCrop:crop_size:{}".format(
                    crop_size)
            if crop_size == 0:
                logging.warning(
                    "fixed_input_shape must == input shape when trainning")
        else:
            resize['ResizeByShort']['short_size'] = min(fixed_input_shape)
            resize['ResizeByShort']['max_size'] = max(fixed_input_shape)
            padding['Padding']['target_size'] = list(fixed_input_shape)
            info['Transforms'].append(resize)
            info['Transforms'].append(padding)


J
jiangjiajun 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
def build_transforms(model_type, transforms_info, to_rgb=True):
    if model_type == "classifier":
        import paddlex.cv.transforms.cls_transforms as T
    elif model_type == "detector":
        import paddlex.cv.transforms.det_transforms as T
    elif model_type == "segmenter":
        import paddlex.cv.transforms.seg_transforms as T
    transforms = list()
    for op_info in transforms_info:
        op_name = list(op_info.keys())[0]
        op_attr = op_info[op_name]
        if not hasattr(T, op_name):
            raise Exception(
                "There's no operator named '{}' in transforms of {}".format(
                    op_name, model_type))
        transforms.append(getattr(T, op_name)(**op_attr))
    eval_transforms = T.Compose(transforms)
    eval_transforms.to_rgb = to_rgb
    return eval_transforms
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196


def build_transforms_v1(model_type, transforms_info, batch_transforms_info):
    """ 老版本模型加载,仅支持PaddleX前端导出的模型
    """
    logging.debug("Use build_transforms_v1 to reconstruct transforms")
    if model_type == "classifier":
        import paddlex.cv.transforms.cls_transforms as T
    elif model_type == "detector":
        import paddlex.cv.transforms.det_transforms as T
    elif model_type == "segmenter":
        import paddlex.cv.transforms.seg_transforms as T
    transforms = list()
    for op_info in transforms_info:
        op_name = op_info[0]
        op_attr = op_info[1]
        if op_name == 'DecodeImage':
            continue
        if op_name == 'Permute':
            continue
        if op_name == 'ResizeByShort':
            op_attr_new = dict()
            if 'short_size' in op_attr:
                op_attr_new['short_size'] = op_attr['short_size']
            else:
                op_attr_new['short_size'] = op_attr['target_size']
            op_attr_new['max_size'] = op_attr.get('max_size', -1)
            op_attr = op_attr_new
        if op_name.startswith('Arrange'):
            continue
        if not hasattr(T, op_name):
            raise Exception(
                "There's no operator named '{}' in transforms of {}".format(
                    op_name, model_type))
        transforms.append(getattr(T, op_name)(**op_attr))
    if model_type == "detector" and len(batch_transforms_info) > 0:
        op_name = batch_transforms_info[0][0]
        op_attr = batch_transforms_info[0][1]
        assert op_name == "PaddingMiniBatch", "Only PaddingMiniBatch transform is supported for batch transform"
        padding = T.Padding(coarsest_stride=op_attr['coarsest_stride'])
        transforms.append(padding)
    eval_transforms = T.Compose(transforms)
    return eval_transforms