base.py 23.6 KB
Newer Older
F
FlyingQianMM 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
J
jiangjiajun 已提交
14 15 16 17

from __future__ import absolute_import
import paddle.fluid as fluid
import os
S
sunyanfang01 已提交
18
import sys
J
jiangjiajun 已提交
19 20 21 22 23 24 25 26 27
import numpy as np
import time
import math
import yaml
import copy
import json
import functools
import paddlex.utils.logging as logging
from paddlex.utils import seconds_to_hms
F
FlyingQianMM 已提交
28
from paddlex.utils.utils import EarlyStop
J
jiangjiajun 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
import paddlex
from collections import OrderedDict
from os import path as osp
from paddle.fluid.framework import Program
from .utils.pretrain_weights import get_pretrain_weights


def dict2str(dict_input):
    out = ''
    for k, v in dict_input.items():
        try:
            v = round(float(v), 6)
        except:
            pass
        out = out + '{}={}, '.format(k, v)
    return out.strip(', ')


class BaseAPI:
    def __init__(self, model_type):
        self.model_type = model_type
        # 现有的CV模型都有这个属性,而这个属且也需要在eval时用到
        self.num_classes = None
        self.labels = None
        self.version = paddlex.__version__
        if paddlex.env_info['place'] == 'cpu':
            self.places = fluid.cpu_places()
        else:
            self.places = fluid.cuda_places()
        self.exe = fluid.Executor(self.places[0])
        self.train_prog = None
        self.test_prog = None
        self.parallel_train_prog = None
        self.train_inputs = None
        self.test_inputs = None
        self.train_outputs = None
        self.test_outputs = None
        self.train_data_loader = None
        self.eval_metrics = None
        # 若模型是从inference model加载进来的,无法调用训练接口进行训练
        self.trainable = True
        # 是否使用多卡间同步BatchNorm均值和方差
        self.sync_bn = False
        # 当前模型状态
        self.status = 'Normal'
74 75
        # 已完成迭代轮数,为恢复训练时的起始轮数
        self.completed_epochs = 0
J
jiangjiajun 已提交
76 77 78 79 80 81

    def _get_single_card_bs(self, batch_size):
        if batch_size % len(self.places) == 0:
            return int(batch_size // len(self.places))
        else:
            raise Exception("Please support correct batch_size, \
82 83 84
                            which can be divided by available cards({}) in {}"
                            .format(paddlex.env_info['num'], paddlex.env_info[
                                'place']))
J
jiangjiajun 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141

    def build_program(self):
        # 构建训练网络
        self.train_inputs, self.train_outputs = self.build_net(mode='train')
        self.train_prog = fluid.default_main_program()
        startup_prog = fluid.default_startup_program()

        # 构建预测网络
        self.test_prog = fluid.Program()
        with fluid.program_guard(self.test_prog, startup_prog):
            with fluid.unique_name.guard():
                self.test_inputs, self.test_outputs = self.build_net(
                    mode='test')
        self.test_prog = self.test_prog.clone(for_test=True)

    def arrange_transforms(self, transforms, mode='train'):
        # 给transforms添加arrange操作
        if self.model_type == 'classifier':
            arrange_transform = paddlex.cls.transforms.ArrangeClassifier
        elif self.model_type == 'segmenter':
            arrange_transform = paddlex.seg.transforms.ArrangeSegmenter
        elif self.model_type == 'detector':
            arrange_name = 'Arrange{}'.format(self.__class__.__name__)
            arrange_transform = getattr(paddlex.det.transforms, arrange_name)
        else:
            raise Exception("Unrecognized model type: {}".format(
                self.model_type))
        if type(transforms.transforms[-1]).__name__.startswith('Arrange'):
            transforms.transforms[-1] = arrange_transform(mode=mode)
        else:
            transforms.transforms.append(arrange_transform(mode=mode))

    def build_train_data_loader(self, dataset, batch_size):
        # 初始化data_loader
        if self.train_data_loader is None:
            self.train_data_loader = fluid.io.DataLoader.from_generator(
                feed_list=list(self.train_inputs.values()),
                capacity=64,
                use_double_buffer=True,
                iterable=True)
        batch_size_each_gpu = self._get_single_card_bs(batch_size)
        generator = dataset.generator(
            batch_size=batch_size_each_gpu, drop_last=True)
        self.train_data_loader.set_sample_list_generator(
            dataset.generator(batch_size=batch_size_each_gpu),
            places=self.places)

    def export_quant_model(self,
                           dataset,
                           save_dir,
                           batch_size=1,
                           batch_num=10,
                           cache_dir="./temp"):
        self.arrange_transforms(transforms=dataset.transforms, mode='quant')
        dataset.num_samples = batch_size * batch_num
        try:
            from .slim.post_quantization import PaddleXPostTrainingQuantization
S
sunyanfang01 已提交
142
            PaddleXPostTrainingQuantization._collect_target_varnames
J
jiangjiajun 已提交
143 144
        except:
            raise Exception(
S
sunyanfang01 已提交
145
                "Model Quantization is not available, try to upgrade your paddlepaddle>=1.8.0"
J
jiangjiajun 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
            )
        is_use_cache_file = True
        if cache_dir is None:
            is_use_cache_file = False
        post_training_quantization = PaddleXPostTrainingQuantization(
            executor=self.exe,
            dataset=dataset,
            program=self.test_prog,
            inputs=self.test_inputs,
            outputs=self.test_outputs,
            batch_size=batch_size,
            batch_nums=batch_num,
            scope=None,
            algo='KL',
            quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"],
            is_full_quantize=False,
            is_use_cache_file=is_use_cache_file,
            cache_dir=cache_dir)
        post_training_quantization.quantize()
        post_training_quantization.save_quantized_model(save_dir)
        model_info = self.get_model_info()
        model_info['status'] = 'Quant'

        # 保存模型输出的变量描述
        model_info['_ModelInputsOutputs'] = dict()
        model_info['_ModelInputsOutputs']['test_inputs'] = [
            [k, v.name] for k, v in self.test_inputs.items()
        ]
        model_info['_ModelInputsOutputs']['test_outputs'] = [
            [k, v.name] for k, v in self.test_outputs.items()
        ]

        with open(
                osp.join(save_dir, 'model.yml'), encoding='utf-8',
                mode='w') as f:
            yaml.dump(model_info, f)

    def net_initialize(self,
                       startup_prog=None,
                       pretrain_weights=None,
                       fuse_bn=False,
                       save_dir='.',
                       sensitivities_file=None,
189 190 191 192 193 194 195 196 197 198 199 200
                       eval_metric_loss=0.05,
                       resume_checkpoint=None):
        if not resume_checkpoint:
            pretrain_dir = osp.join(save_dir, 'pretrain')
            if not os.path.isdir(pretrain_dir):
                if os.path.exists(pretrain_dir):
                    os.remove(pretrain_dir)
                os.makedirs(pretrain_dir)
            if hasattr(self, 'backbone'):
                backbone = self.backbone
            else:
                backbone = self.__class__.__name__
F
FlyingQianMM 已提交
201 202
                if backbone == "HRNet":
                    backbone = backbone + "_W{}".format(self.width)
203 204
            pretrain_weights = get_pretrain_weights(
                pretrain_weights, self.model_type, backbone, pretrain_dir)
J
jiangjiajun 已提交
205 206 207
        if startup_prog is None:
            startup_prog = fluid.default_startup_program()
        self.exe.run(startup_prog)
208 209 210 211 212 213 214
        if resume_checkpoint:
            logging.info(
                "Resume checkpoint from {}.".format(resume_checkpoint),
                use_color=True)
            paddlex.utils.utils.load_pretrain_weights(
                self.exe, self.train_prog, resume_checkpoint, resume=True)
            if not osp.exists(osp.join(resume_checkpoint, "model.yml")):
215 216
                raise Exception("There's not model.yml in {}".format(
                    resume_checkpoint))
217 218 219 220
            with open(osp.join(resume_checkpoint, "model.yml")) as f:
                info = yaml.load(f.read(), Loader=yaml.Loader)
                self.completed_epochs = info['completed_epochs']
        elif pretrain_weights is not None:
J
jiangjiajun 已提交
221
            logging.info(
C
Channingss 已提交
222 223
                "Load pretrain weights from {}.".format(pretrain_weights),
                use_color=True)
J
jiangjiajun 已提交
224 225 226 227
            paddlex.utils.utils.load_pretrain_weights(
                self.exe, self.train_prog, pretrain_weights, fuse_bn)
        # 进行裁剪
        if sensitivities_file is not None:
J
jiangjiajun 已提交
228
            import paddleslim
J
jiangjiajun 已提交
229 230 231 232
            from .slim.prune_config import get_sensitivities
            sensitivities_file = get_sensitivities(sensitivities_file, self,
                                                   save_dir)
            from .slim.prune import get_params_ratios, prune_program
J
jiangjiajun 已提交
233 234
            logging.info(
                "Start to prune program with eval_metric_loss = {}".format(
C
Channingss 已提交
235 236
                    eval_metric_loss),
                use_color=True)
J
jiangjiajun 已提交
237
            origin_flops = paddleslim.analysis.flops(self.test_prog)
J
jiangjiajun 已提交
238 239 240
            prune_params_ratios = get_params_ratios(
                sensitivities_file, eval_metric_loss=eval_metric_loss)
            prune_program(self, prune_params_ratios)
J
jiangjiajun 已提交
241 242 243 244
            current_flops = paddleslim.analysis.flops(self.test_prog)
            remaining_ratio = current_flops / origin_flops
            logging.info(
                "Finish prune program, before FLOPs:{}, after prune FLOPs:{}, remaining ratio:{}"
C
Channingss 已提交
245 246
                .format(origin_flops, current_flops, remaining_ratio),
                use_color=True)
J
jiangjiajun 已提交
247 248 249 250 251 252 253 254 255 256 257
            self.status = 'Prune'

    def get_model_info(self):
        info = dict()
        info['version'] = paddlex.__version__
        info['Model'] = self.__class__.__name__
        info['_Attributes'] = {'model_type': self.model_type}
        if 'self' in self.init_params:
            del self.init_params['self']
        if '__class__' in self.init_params:
            del self.init_params['__class__']
S
sunyanfang01 已提交
258 259 260
        if 'model_name' in self.init_params:
            del self.init_params['model_name']

J
jiangjiajun 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274
        info['_init_params'] = self.init_params

        info['_Attributes']['num_classes'] = self.num_classes
        info['_Attributes']['labels'] = self.labels
        try:
            primary_metric_key = list(self.eval_metrics.keys())[0]
            primary_metric_value = float(self.eval_metrics[primary_metric_key])
            info['_Attributes']['eval_metrics'] = {
                primary_metric_key: primary_metric_value
            }
        except:
            pass

        if hasattr(self, 'test_transforms'):
275 276 277 278 279 280
            if hasattr(self.test_transforms, 'to_rgb'):
                if self.test_transforms.to_rgb:
                    info['TransformsMode'] = 'RGB'
                else:
                    info['TransformsMode'] = 'BGR'

J
jiangjiajun 已提交
281 282 283 284 285 286
            if self.test_transforms is not None:
                info['Transforms'] = list()
                for op in self.test_transforms.transforms:
                    name = op.__class__.__name__
                    attr = op.__dict__
                    info['Transforms'].append({name: attr})
287
        info['completed_epochs'] = self.completed_epochs
J
jiangjiajun 已提交
288 289 290 291 292 293 294
        return info

    def save_model(self, save_dir):
        if not osp.isdir(save_dir):
            if osp.exists(save_dir):
                os.remove(save_dir)
            os.makedirs(save_dir)
J
jiangjiajun 已提交
295 296 297 298
        if self.train_prog is not None:
            fluid.save(self.train_prog, osp.join(save_dir, 'model'))
        else:
            fluid.save(self.test_prog, osp.join(save_dir, 'model'))
J
jiangjiajun 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
        model_info = self.get_model_info()
        model_info['status'] = self.status
        with open(
                osp.join(save_dir, 'model.yml'), encoding='utf-8',
                mode='w') as f:
            yaml.dump(model_info, f)
        # 评估结果保存
        if hasattr(self, 'eval_details'):
            with open(osp.join(save_dir, 'eval_details.json'), 'w') as f:
                json.dump(self.eval_details, f)

        if self.status == 'Prune':
            # 保存裁剪的shape
            shapes = {}
            for block in self.train_prog.blocks:
                for param in block.all_parameters():
                    pd_var = fluid.global_scope().find_var(param.name)
                    pd_param = pd_var.get_tensor()
                    shapes[param.name] = np.array(pd_param).shape
            with open(
                    osp.join(save_dir, 'prune.yml'), encoding='utf-8',
                    mode='w') as f:
                yaml.dump(shapes, f)

        # 模型保存成功的标志
        open(osp.join(save_dir, '.success'), 'w').close()
        logging.info("Model saved in {}.".format(save_dir))

C
Channingss 已提交
327
    def export_inference_model(self, save_dir):
J
jiangjiajun 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
        test_input_names = [
            var.name for var in list(self.test_inputs.values())
        ]
        test_outputs = list(self.test_outputs.values())
        if self.__class__.__name__ == 'MaskRCNN':
            from paddlex.utils.save import save_mask_inference_model
            save_mask_inference_model(
                dirname=save_dir,
                executor=self.exe,
                params_filename='__params__',
                feeded_var_names=test_input_names,
                target_vars=test_outputs,
                main_program=self.test_prog)
        else:
            fluid.io.save_inference_model(
                dirname=save_dir,
                executor=self.exe,
                params_filename='__params__',
                feeded_var_names=test_input_names,
                target_vars=test_outputs,
                main_program=self.test_prog)
        model_info = self.get_model_info()
        model_info['status'] = 'Infer'

        # 保存模型输出的变量描述
        model_info['_ModelInputsOutputs'] = dict()
        model_info['_ModelInputsOutputs']['test_inputs'] = [
            [k, v.name] for k, v in self.test_inputs.items()
        ]
        model_info['_ModelInputsOutputs']['test_outputs'] = [
            [k, v.name] for k, v in self.test_outputs.items()
        ]
        with open(
                osp.join(save_dir, 'model.yml'), encoding='utf-8',
                mode='w') as f:
            yaml.dump(model_info, f)
C
Channingss 已提交
364

J
jiangjiajun 已提交
365 366
        # 模型保存成功的标志
        open(osp.join(save_dir, '.success'), 'w').close()
367 368
        logging.info("Model for inference deploy saved in {}.".format(
            save_dir))
J
jiangjiajun 已提交
369 370 371 372 373 374 375 376 377

    def train_loop(self,
                   num_epochs,
                   train_dataset,
                   train_batch_size,
                   eval_dataset=None,
                   save_interval_epochs=1,
                   log_interval_steps=10,
                   save_dir='output',
F
FlyingQianMM 已提交
378 379 380
                   use_vdl=False,
                   early_stop=False,
                   early_stop_patience=5):
S
sunyanfang01 已提交
381
        if train_dataset.num_samples < train_batch_size:
382 383
            raise Exception(
                'The amount of training datset must be larger than batch size.')
J
jiangjiajun 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
        if not osp.isdir(save_dir):
            if osp.exists(save_dir):
                os.remove(save_dir)
            os.makedirs(save_dir)
        if use_vdl:
            from visualdl import LogWriter
            vdl_logdir = osp.join(save_dir, 'vdl_log')
        # 给transform添加arrange操作
        self.arrange_transforms(
            transforms=train_dataset.transforms, mode='train')
        # 构建train_data_loader
        self.build_train_data_loader(
            dataset=train_dataset, batch_size=train_batch_size)

        if eval_dataset is not None:
            self.eval_transforms = eval_dataset.transforms
            self.test_transforms = copy.deepcopy(eval_dataset.transforms)

        # 获取实时变化的learning rate
        lr = self.optimizer._learning_rate
        if isinstance(lr, fluid.framework.Variable):
            self.train_outputs['lr'] = lr

        # 在多卡上跑训练
        if self.parallel_train_prog is None:
            build_strategy = fluid.compiler.BuildStrategy()
            build_strategy.fuse_all_optimizer_ops = False
            if paddlex.env_info['place'] != 'cpu' and len(self.places) > 1:
                build_strategy.sync_batch_norm = self.sync_bn
            exec_strategy = fluid.ExecutionStrategy()
            exec_strategy.num_iteration_per_drop_scope = 1
            self.parallel_train_prog = fluid.CompiledProgram(
                self.train_prog).with_data_parallel(
                    loss_name=self.train_outputs['loss'].name,
                    build_strategy=build_strategy,
                    exec_strategy=exec_strategy)

421 422
        total_num_steps = math.floor(train_dataset.num_samples /
                                     train_batch_size)
J
jiangjiajun 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435
        num_steps = 0
        time_stat = list()
        time_train_one_epoch = None
        time_eval_one_epoch = None

        total_num_steps_eval = 0
        # 模型总共的评估次数
        total_eval_times = math.ceil(num_epochs / save_interval_epochs)
        # 检测目前仅支持单卡评估,训练数据batch大小与显卡数量之商为验证数据batch大小。
        eval_batch_size = train_batch_size
        if self.model_type == 'detector':
            eval_batch_size = self._get_single_card_bs(train_batch_size)
        if eval_dataset is not None:
436 437
            total_num_steps_eval = math.ceil(eval_dataset.num_samples /
                                             eval_batch_size)
J
jiangjiajun 已提交
438 439 440

        if use_vdl:
            # VisualDL component
S
sunyanfang01 已提交
441
            log_writer = LogWriter(vdl_logdir)
J
jiangjiajun 已提交
442

F
FlyingQianMM 已提交
443 444 445
        thresh = 0.0001
        if early_stop:
            earlystop = EarlyStop(early_stop_patience, thresh)
J
jiangjiajun 已提交
446 447
        best_accuracy_key = ""
        best_accuracy = -1.0
J
jiangjiajun 已提交
448
        best_model_epoch = -1
F
FlyingQianMM 已提交
449
        start_epoch = self.completed_epochs
450
        for i in range(start_epoch, num_epochs):
J
jiangjiajun 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
            records = list()
            step_start_time = time.time()
            epoch_start_time = time.time()
            for step, data in enumerate(self.train_data_loader()):
                outputs = self.exe.run(
                    self.parallel_train_prog,
                    feed=data,
                    fetch_list=list(self.train_outputs.values()))
                outputs_avg = np.mean(np.array(outputs), axis=1)
                records.append(outputs_avg)

                # 训练完成剩余时间预估
                current_time = time.time()
                step_cost_time = current_time - step_start_time
                step_start_time = current_time
                if len(time_stat) < 20:
                    time_stat.append(step_cost_time)
                else:
                    time_stat[num_steps % 20] = step_cost_time

                # 每间隔log_interval_steps,输出loss信息
                num_steps += 1
                if num_steps % log_interval_steps == 0:
                    step_metrics = OrderedDict(
                        zip(list(self.train_outputs.keys()), outputs_avg))

                    if use_vdl:
                        for k, v in step_metrics.items():
479 480 481
                            log_writer.add_scalar(
                                'Metrics/Training(Step): {}'.format(k), v,
                                num_steps)
J
jiangjiajun 已提交
482 483 484 485 486 487 488

                    # 估算剩余时间
                    avg_step_time = np.mean(time_stat)
                    if time_train_one_epoch is not None:
                        eta = (num_epochs - i - 1) * time_train_one_epoch + (
                            total_num_steps - step - 1) * avg_step_time
                    else:
489 490
                        eta = ((num_epochs - i) * total_num_steps - step - 1
                               ) * avg_step_time
J
jiangjiajun 已提交
491
                    if time_eval_one_epoch is not None:
492 493 494
                        eval_eta = (
                            total_eval_times - i // save_interval_epochs
                        ) * time_eval_one_epoch
J
jiangjiajun 已提交
495 496 497 498 499 500 501 502 503
                    else:
                        eval_eta = (
                            total_eval_times - i // save_interval_epochs
                        ) * total_num_steps_eval * avg_step_time
                    eta_str = seconds_to_hms(eta + eval_eta)

                    logging.info(
                        "[TRAIN] Epoch={}/{}, Step={}/{}, {}, time_each_step={}s, eta={}"
                        .format(i + 1, num_epochs, step + 1, total_num_steps,
504 505
                                dict2str(step_metrics),
                                round(avg_step_time, 2), eta_str))
J
jiangjiajun 已提交
506
            train_metrics = OrderedDict(
507 508
                zip(list(self.train_outputs.keys()), np.mean(
                    records, axis=0)))
J
jiangjiajun 已提交
509 510 511 512 513 514 515 516 517 518 519
            logging.info('[TRAIN] Epoch {} finished, {} .'.format(
                i + 1, dict2str(train_metrics)))
            time_train_one_epoch = time.time() - epoch_start_time
            epoch_start_time = time.time()

            # 每间隔save_interval_epochs, 在验证集上评估和对模型进行保存
            eval_epoch_start_time = time.time()
            if (i + 1) % save_interval_epochs == 0 or i == num_epochs - 1:
                current_save_dir = osp.join(save_dir, "epoch_{}".format(i + 1))
                if not osp.isdir(current_save_dir):
                    os.makedirs(current_save_dir)
J
jiangjiajun 已提交
520
                if eval_dataset is not None and eval_dataset.num_samples > 0:
J
jiangjiajun 已提交
521 522 523 524 525 526 527
                    self.eval_metrics, self.eval_details = self.evaluate(
                        eval_dataset=eval_dataset,
                        batch_size=eval_batch_size,
                        epoch_id=i + 1,
                        return_details=True)
                    logging.info('[EVAL] Finished, Epoch={}, {} .'.format(
                        i + 1, dict2str(self.eval_metrics)))
528
                    self.completed_epochs += 1
J
jiangjiajun 已提交
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
                    # 保存最优模型
                    best_accuracy_key = list(self.eval_metrics.keys())[0]
                    current_accuracy = self.eval_metrics[best_accuracy_key]
                    if current_accuracy > best_accuracy:
                        best_accuracy = current_accuracy
                        best_model_epoch = i + 1
                        best_model_dir = osp.join(save_dir, "best_model")
                        self.save_model(save_dir=best_model_dir)
                    if use_vdl:
                        for k, v in self.eval_metrics.items():
                            if isinstance(v, list):
                                continue
                            if isinstance(v, np.ndarray):
                                if v.size > 1:
                                    continue
544 545
                            log_writer.add_scalar(
                                "Metrics/Eval(Epoch): {}".format(k), v, i + 1)
J
jiangjiajun 已提交
546 547 548
                self.save_model(save_dir=current_save_dir)
                time_eval_one_epoch = time.time() - eval_epoch_start_time
                eval_epoch_start_time = time.time()
J
jiangjiajun 已提交
549 550 551 552 553
                if best_model_epoch > 0:
                    logging.info(
                        'Current evaluated best model in eval_dataset is epoch_{}, {}={}'
                        .format(best_model_epoch, best_accuracy_key,
                                best_accuracy))
F
FlyingQianMM 已提交
554 555
                if eval_dataset is not None and early_stop:
                    if earlystop(current_accuracy):
556
                        break