faster_rcnn.py 18.9 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
import math
import tqdm
import numpy as np
import paddle.fluid as fluid
import paddlex.utils.logging as logging
import paddlex
import os.path as osp
import copy
from .base import BaseAPI
from collections import OrderedDict
from .utils.detection_eval import eval_results, bbox2out


class FasterRCNN(BaseAPI):
    """构建FasterRCNN,并实现其训练、评估、预测和模型导出。

    Args:
        num_classes (int): 包含了背景类的类别数。默认为81。
        backbone (str): FasterRCNN的backbone网络,取值范围为['ResNet18', 'ResNet50',
35
            'ResNet50_vd', 'ResNet101', 'ResNet101_vd', 'HRNet_W18']。默认为'ResNet50'。
J
jiangjiajun 已提交
36 37 38 39 40 41 42 43 44 45
        with_fpn (bool): 是否使用FPN结构。默认为True。
        aspect_ratios (list): 生成anchor高宽比的可选值。默认为[0.5, 1.0, 2.0]。
        anchor_sizes (list): 生成anchor大小的可选值。默认为[32, 64, 128, 256, 512]。
    """

    def __init__(self,
                 num_classes=81,
                 backbone='ResNet50',
                 with_fpn=True,
                 aspect_ratios=[0.5, 1.0, 2.0],
S
sunyanfang01 已提交
46 47
                 anchor_sizes=[32, 64, 128, 256, 512],
                 bbox_loss_type='SmoothL1Loss'):
J
jiangjiajun 已提交
48 49 50
        self.init_params = locals()
        super(FasterRCNN, self).__init__('detector')
        backbones = [
51 52
            'ResNet18', 'ResNet50', 'ResNet50_vd', 'ResNet101', 'ResNet101_vd',
            'HRNet_W18'
J
jiangjiajun 已提交
53 54 55
        ]
        assert backbone in backbones, "backbone should be one of {}".format(
            backbones)
S
sunyanfang01 已提交
56 57 58 59 60
        bbox_loss_types = [
            'SmoothL1Loss', 'CiouLoss', 'DiouLoss', 'GiouLoss'
        ]
        assert backbone in backbones, "bbox_loss_type should be one of {}".format(
            bbox_loss_types)
J
jiangjiajun 已提交
61 62 63 64 65
        self.backbone = backbone
        self.num_classes = num_classes
        self.with_fpn = with_fpn
        self.aspect_ratios = aspect_ratios
        self.anchor_sizes = anchor_sizes
S
sunyanfang01 已提交
66
        self.bbox_loss_type = bbox_loss_type
J
jiangjiajun 已提交
67
        self.labels = None
68
        self.fixed_input_shape = None
J
jiangjiajun 已提交
69 70 71 72 73 74 75 76 77

    def _get_backbone(self, backbone_name):
        norm_type = None
        if backbone_name == 'ResNet18':
            layers = 18
            variant = 'b'
        elif backbone_name == 'ResNet50':
            layers = 50
            variant = 'b'
F
FlyingQianMM 已提交
78
        elif backbone_name == 'ResNet50_vd':
J
jiangjiajun 已提交
79 80 81 82 83 84 85
            layers = 50
            variant = 'd'
            norm_type = 'affine_channel'
        elif backbone_name == 'ResNet101':
            layers = 101
            variant = 'b'
            norm_type = 'affine_channel'
F
FlyingQianMM 已提交
86
        elif backbone_name == 'ResNet101_vd':
J
jiangjiajun 已提交
87 88 89
            layers = 101
            variant = 'd'
            norm_type = 'affine_channel'
90 91 92 93 94 95
        elif backbone_name == 'HRNet_W18':
            backbone = paddlex.cv.nets.hrnet.HRNet(
                width=18, freeze_norm=True, norm_decay=0., freeze_at=0)
            if self.with_fpn is False:
                self.with_fpn = True
            return backbone
S
sunyanfang01 已提交
96 97 98
        if backbone_name.startswith('ResNet'):
            if self.bbox_loss_type != 'SmoothL1Loss':
                norm_type = 'bn'
J
jiangjiajun 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
        if self.with_fpn:
            backbone = paddlex.cv.nets.resnet.ResNet(
                norm_type='bn' if norm_type is None else norm_type,
                layers=layers,
                variant=variant,
                freeze_norm=True,
                norm_decay=0.,
                feature_maps=[2, 3, 4, 5],
                freeze_at=2)
        else:
            backbone = paddlex.cv.nets.resnet.ResNet(
                norm_type='affine_channel' if norm_type is None else norm_type,
                layers=layers,
                variant=variant,
                freeze_norm=True,
                norm_decay=0.,
                feature_maps=4,
                freeze_at=2)
        return backbone

    def build_net(self, mode='train'):
        train_pre_nms_top_n = 2000 if self.with_fpn else 12000
        test_pre_nms_top_n = 1000 if self.with_fpn else 6000
        model = paddlex.cv.nets.detection.FasterRCNN(
            backbone=self._get_backbone(self.backbone),
            mode=mode,
            num_classes=self.num_classes,
            with_fpn=self.with_fpn,
            aspect_ratios=self.aspect_ratios,
            anchor_sizes=self.anchor_sizes,
            train_pre_nms_top_n=train_pre_nms_top_n,
C
Channingss 已提交
130
            test_pre_nms_top_n=test_pre_nms_top_n,
S
sunyanfang01 已提交
131 132
            fixed_input_shape=self.fixed_input_shape,
            bbox_loss_type=self.bbox_loss_type)
J
jiangjiajun 已提交
133 134 135 136 137
        inputs = model.generate_inputs()
        if mode == 'train':
            model_out = model.build_net(inputs)
            loss = model_out['loss']
            self.optimizer.minimize(loss)
138 139 140 141 142 143
            outputs = OrderedDict(
                [('loss', model_out['loss']),
                 ('loss_cls', model_out['loss_cls']),
                 ('loss_bbox', model_out['loss_bbox']),
                 ('loss_rpn_cls', model_out['loss_rpn_cls']), (
                     'loss_rpn_bbox', model_out['loss_rpn_bbox'])])
J
jiangjiajun 已提交
144 145 146 147 148 149 150
        else:
            outputs = model.build_net(inputs)
        return inputs, outputs

    def default_optimizer(self, learning_rate, warmup_steps, warmup_start_lr,
                          lr_decay_epochs, lr_decay_gamma,
                          num_steps_each_epoch):
S
sunyanfang01 已提交
151 152 153
        if warmup_steps > lr_decay_epochs[0] * num_steps_each_epoch:
            raise Exception("warmup_steps should less than {}".format(
                lr_decay_epochs[0] * num_steps_each_epoch))
J
jiangjiajun 已提交
154 155 156 157 158
        boundaries = [b * num_steps_each_epoch for b in lr_decay_epochs]
        values = [(lr_decay_gamma**i) * learning_rate
                  for i in range(len(lr_decay_epochs) + 1)]
        lr_decay = fluid.layers.piecewise_decay(
            boundaries=boundaries, values=values)
S
sunyanfang01 已提交
159
        lr_warmup = fluid.layers.linear_lr_warmup(
S
sunyanfang01 已提交
160
            learning_rate=lr_decay,
S
sunyanfang01 已提交
161 162 163 164 165
            warmup_steps=warmup_steps,
            start_lr=warmup_start_lr,
            end_lr=learning_rate)
        optimizer = fluid.optimizer.Momentum(
            learning_rate=lr_warmup,
J
jiangjiajun 已提交
166
            momentum=0.9,
S
sunyanfang01 已提交
167
            regularization=fluid.regularizer.L2Decay(1e-04))
J
jiangjiajun 已提交
168 169
        return optimizer

S
sunyanfang01 已提交
170

J
jiangjiajun 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
    def train(self,
              num_epochs,
              train_dataset,
              train_batch_size=2,
              eval_dataset=None,
              save_interval_epochs=1,
              log_interval_steps=2,
              save_dir='output',
              pretrain_weights='IMAGENET',
              optimizer=None,
              learning_rate=0.0025,
              warmup_steps=500,
              warmup_start_lr=1.0 / 1200,
              lr_decay_epochs=[8, 11],
              lr_decay_gamma=0.1,
              metric=None,
F
FlyingQianMM 已提交
187 188
              use_vdl=False,
              early_stop=False,
189 190
              early_stop_patience=5,
              resume_checkpoint=None):
J
jiangjiajun 已提交
191 192 193 194 195 196 197 198 199 200 201 202
        """训练。

        Args:
            num_epochs (int): 训练迭代轮数。
            train_dataset (paddlex.datasets): 训练数据读取器。
            train_batch_size (int): 训练数据batch大小。目前检测仅支持单卡评估,训练数据batch大小与
                显卡数量之商为验证数据batch大小。默认为2。
            eval_dataset (paddlex.datasets): 验证数据读取器。
            save_interval_epochs (int): 模型保存间隔(单位:迭代轮数)。默认为1。
            log_interval_steps (int): 训练日志输出间隔(单位:迭代次数)。默认为20。
            save_dir (str): 模型保存路径。默认值为'output'。
            pretrain_weights (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',
203
                则自动下载在ImageNet图片数据上预训练的模型权重;若为None,则不使用预训练模型。默认为'IMAGENET'。
J
jiangjiajun 已提交
204 205 206 207 208 209 210 211 212
            optimizer (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认优化器:
                fluid.layers.piecewise_decay衰减策略,fluid.optimizer.Momentum优化方法。
            learning_rate (float): 默认优化器的初始学习率。默认为0.0025。
            warmup_steps (int):  默认优化器进行warmup过程的步数。默认为500。
            warmup_start_lr (int): 默认优化器warmup的起始学习率。默认为1.0/1200。
            lr_decay_epochs (list): 默认优化器的学习率衰减轮数。默认为[8, 11]。
            lr_decay_gamma (float): 默认优化器的学习率衰减率。默认为0.1。
            metric (bool): 训练过程中评估的方式,取值范围为['COCO', 'VOC']。默认值为None。
            use_vdl (bool): 是否使用VisualDL进行可视化。默认值为False。
F
FlyingQianMM 已提交
213 214 215
            early_stop (bool): 是否使用提前终止训练策略。默认值为False。
            early_stop_patience (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内
                连续下降或持平,则终止训练。默认值为5。
216
            resume_checkpoint (str): 恢复训练时指定上次训练保存的模型路径。若为None,则不会恢复训练。默认值为None。
J
jiangjiajun 已提交
217 218 219 220 221 222 223 224

        Raises:
            ValueError: 评估类型不在指定列表中。
            ValueError: 模型从inference model进行加载。
        """
        if metric is None:
            if isinstance(train_dataset, paddlex.datasets.CocoDetection):
                metric = 'COCO'
225 226
            elif isinstance(train_dataset, paddlex.datasets.VOCDetection) or \
                    isinstance(train_dataset, paddlex.datasets.EasyDataDet):
J
jiangjiajun 已提交
227 228 229
                metric = 'VOC'
            else:
                raise ValueError(
230
                    "train_dataset should be datasets.VOCDetection or datasets.COCODetection or datasets.EasyDataDet."
J
jiangjiajun 已提交
231 232 233 234
                )
        assert metric in ['COCO', 'VOC'], "Metric only support 'VOC' or 'COCO'"
        self.metric = metric
        if not self.trainable:
J
jiangjiajun 已提交
235
            raise ValueError("Model is not trainable from load_model method.")
J
jiangjiajun 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248
        self.labels = copy.deepcopy(train_dataset.labels)
        self.labels.insert(0, 'background')
        # 构建训练网络
        if optimizer is None:
            # 构建默认的优化策略
            num_steps_each_epoch = train_dataset.num_samples // train_batch_size
            optimizer = self.default_optimizer(
                learning_rate, warmup_steps, warmup_start_lr, lr_decay_epochs,
                lr_decay_gamma, num_steps_each_epoch)
        self.optimizer = optimizer
        # 构建训练、验证、测试网络
        self.build_program()
        fuse_bn = True
249 250 251
        if self.with_fpn and self.backbone in [
                'ResNet18', 'ResNet50', 'HRNet_W18'
        ]:
J
jiangjiajun 已提交
252
            fuse_bn = False
253 254 255
        self.net_initialize(
            startup_prog=fluid.default_startup_program(),
            pretrain_weights=pretrain_weights,
F
FlyingQianMM 已提交
256
            fuse_bn=fuse_bn,
257 258
            save_dir=save_dir,
            resume_checkpoint=resume_checkpoint)
F
FlyingQianMM 已提交
259

J
jiangjiajun 已提交
260 261 262 263 264 265 266 267 268
        # 训练
        self.train_loop(
            num_epochs=num_epochs,
            train_dataset=train_dataset,
            train_batch_size=train_batch_size,
            eval_dataset=eval_dataset,
            save_interval_epochs=save_interval_epochs,
            log_interval_steps=log_interval_steps,
            save_dir=save_dir,
F
FlyingQianMM 已提交
269 270 271
            use_vdl=use_vdl,
            early_stop=early_stop,
            early_stop_patience=early_stop_patience)
J
jiangjiajun 已提交
272 273 274 275 276 277 278 279 280 281 282

    def evaluate(self,
                 eval_dataset,
                 batch_size=1,
                 epoch_id=None,
                 metric=None,
                 return_details=False):
        """评估。

        Args:
            eval_dataset (paddlex.datasets): 验证数据读取器。
283
            batch_size (int): 验证数据批大小。默认为1。当前只支持设置为1。
J
jiangjiajun 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
            epoch_id (int): 当前评估模型所在的训练轮数。
            metric (bool): 训练过程中评估的方式,取值范围为['COCO', 'VOC']。默认为None,
                根据用户传入的Dataset自动选择,如为VOCDetection,则metric为'VOC';
                如为COCODetection,则metric为'COCO'。
            return_details (bool): 是否返回详细信息。默认值为False。

        Returns:
            tuple (metrics, eval_details) /dict (metrics): 当return_details为True时,返回(metrics, eval_details),
                当return_details为False时,返回metrics。metrics为dict,包含关键字:'bbox_mmap'或者’bbox_map‘,
                分别表示平均准确率平均值在各个阈值下的结果取平均值的结果(mmAP)、平均准确率平均值(mAP)。
                eval_details为dict,包含关键字:'bbox',对应元素预测结果列表,每个预测结果由图像id、
                预测框类别id、预测框坐标、预测框得分;’gt‘:真实标注框相关信息。
        """
        self.arrange_transforms(
            transforms=eval_dataset.transforms, mode='eval')
        if metric is None:
            if hasattr(self, 'metric') and self.metric is not None:
                metric = self.metric
            else:
                if isinstance(eval_dataset, paddlex.datasets.CocoDetection):
                    metric = 'COCO'
                elif isinstance(eval_dataset, paddlex.datasets.VOCDetection):
                    metric = 'VOC'
                else:
                    raise Exception(
                        "eval_dataset should be datasets.VOCDetection or datasets.COCODetection."
                    )
        assert metric in ['COCO', 'VOC'], "Metric only support 'VOC' or 'COCO'"
312 313 314 315 316
        if batch_size > 1:
            batch_size = 1
            logging.warning(
                "Faster RCNN supports batch_size=1 only during evaluating, so batch_size is forced to be set to 1."
            )
J
jiangjiajun 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
        dataset = eval_dataset.generator(
            batch_size=batch_size, drop_last=False)

        total_steps = math.ceil(eval_dataset.num_samples * 1.0 / batch_size)
        results = list()
        logging.info(
            "Start to evaluating(total_samples={}, total_steps={})...".format(
                eval_dataset.num_samples, total_steps))
        for step, data in tqdm.tqdm(enumerate(dataset()), total=total_steps):
            images = np.array([d[0] for d in data]).astype('float32')
            im_infos = np.array([d[1] for d in data]).astype('float32')
            im_shapes = np.array([d[3] for d in data]).astype('float32')
            feed_data = {
                'image': images,
                'im_info': im_infos,
                'im_shape': im_shapes,
            }
334 335 336 337
            outputs = self.exe.run(self.test_prog,
                                   feed=[feed_data],
                                   fetch_list=list(self.test_outputs.values()),
                                   return_numpy=False)
J
jiangjiajun 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
            res = {
                'bbox': (np.array(outputs[0]),
                         outputs[0].recursive_sequence_lengths())
            }
            res_im_id = [d[2] for d in data]
            res['im_info'] = (im_infos, [])
            res['im_shape'] = (im_shapes, [])
            res['im_id'] = (np.array(res_im_id), [])
            if metric == 'VOC':
                res_gt_box = []
                res_gt_label = []
                res_is_difficult = []
                for d in data:
                    res_gt_box.extend(d[4])
                    res_gt_label.extend(d[5])
                    res_is_difficult.extend(d[6])
                res_gt_box_lod = [d[4].shape[0] for d in data]
                res_gt_label_lod = [d[5].shape[0] for d in data]
                res_is_difficult_lod = [d[6].shape[0] for d in data]
                res['gt_box'] = (np.array(res_gt_box), [res_gt_box_lod])
                res['gt_label'] = (np.array(res_gt_label), [res_gt_label_lod])
                res['is_difficult'] = (np.array(res_is_difficult),
                                       [res_is_difficult_lod])
            results.append(res)
362 363
            logging.debug("[EVAL] Epoch={}, Step={}/{}".format(epoch_id, step +
                                                               1, total_steps))
J
jiangjiajun 已提交
364 365 366
        box_ap_stats, eval_details = eval_results(
            results, metric, eval_dataset.coco_gt, with_background=True)
        metrics = OrderedDict(
367 368
            zip(['bbox_mmap'
                 if metric == 'COCO' else 'bbox_map'], box_ap_stats))
J
jiangjiajun 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381
        if return_details:
            return metrics, eval_details
        return metrics

    def predict(self, img_file, transforms=None):
        """预测。

        Args:
            img_file (str): 预测图像路径。
            transforms (paddlex.det.transforms): 数据预处理操作。

        Returns:
            list: 预测结果列表,每个预测结果由预测框类别标签、
F
FlyingQianMM 已提交
382 383
              预测框类别名称、预测框坐标(坐标格式为[xmin, ymin, w, h])、
              预测框得分组成。
J
jiangjiajun 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396
        """
        if transforms is None and not hasattr(self, 'test_transforms'):
            raise Exception("transforms need to be defined, now is None.")
        if transforms is not None:
            self.arrange_transforms(transforms=transforms, mode='test')
            im, im_resize_info, im_shape = transforms(img_file)
        else:
            self.arrange_transforms(
                transforms=self.test_transforms, mode='test')
            im, im_resize_info, im_shape = self.test_transforms(img_file)
        im = np.expand_dims(im, axis=0)
        im_resize_info = np.expand_dims(im_resize_info, axis=0)
        im_shape = np.expand_dims(im_shape, axis=0)
397 398 399 400 401 402 403 404
        outputs = self.exe.run(self.test_prog,
                               feed={
                                   'image': im,
                                   'im_info': im_resize_info,
                                   'im_shape': im_shape
                               },
                               fetch_list=list(self.test_outputs.values()),
                               return_numpy=False)
J
jiangjiajun 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417
        res = {
            k: (np.array(v), v.recursive_sequence_lengths())
            for k, v in zip(list(self.test_outputs.keys()), outputs)
        }
        res['im_id'] = (np.array([[0]]).astype('int32'), [])
        clsid2catid = dict({i: i for i in range(self.num_classes)})
        xywh_results = bbox2out([res], clsid2catid)
        results = list()
        for xywh_res in xywh_results:
            del xywh_res['image_id']
            xywh_res['category'] = self.labels[xywh_res['category_id']]
            results.append(xywh_res)
        return results