mask_rcnn.py 16.7 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
import math
import tqdm
import numpy as np
import paddle.fluid as fluid
import paddlex.utils.logging as logging
import paddlex
import copy
import os.path as osp
from collections import OrderedDict
from .faster_rcnn import FasterRCNN
from .utils.detection_eval import eval_results, bbox2out, mask2out


class MaskRCNN(FasterRCNN):
    """构建MaskRCNN,并实现其训练、评估、预测和模型导出。

    Args:
        num_classes (int): 包含了背景类的类别数。默认为81。
        backbone (str): MaskRCNN的backbone网络,取值范围为['ResNet18', 'ResNet50',
            'ResNet50vd', 'ResNet101', 'ResNet101vd']。默认为'ResNet50'。
        with_fpn (bool): 是否使用FPN结构。默认为True。
        aspect_ratios (list): 生成anchor高宽比的可选值。默认为[0.5, 1.0, 2.0]。
        anchor_sizes (list): 生成anchor大小的可选值。默认为[32, 64, 128, 256, 512]。
    """

    def __init__(self,
                 num_classes=81,
                 backbone='ResNet50',
                 with_fpn=True,
                 aspect_ratios=[0.5, 1.0, 2.0],
                 anchor_sizes=[32, 64, 128, 256, 512]):
        self.init_params = locals()
        backbones = [
            'ResNet18', 'ResNet50', 'ResNet50vd', 'ResNet101', 'ResNet101vd'
        ]
        assert backbone in backbones, "backbone should be one of {}".format(
            backbones)
        super(FasterRCNN, self).__init__('detector')
        self.backbone = backbone
        self.num_classes = num_classes
        self.with_fpn = with_fpn
        self.anchor_sizes = anchor_sizes
        self.labels = None
        if with_fpn:
            self.mask_head_resolution = 28
        else:
            self.mask_head_resolution = 14

    def build_net(self, mode='train'):
        train_pre_nms_top_n = 2000 if self.with_fpn else 12000
        test_pre_nms_top_n = 1000 if self.with_fpn else 6000
        num_convs = 4 if self.with_fpn else 0
        model = paddlex.cv.nets.detection.MaskRCNN(
            backbone=self._get_backbone(self.backbone),
            num_classes=self.num_classes,
            mode=mode,
            with_fpn=self.with_fpn,
            train_pre_nms_top_n=train_pre_nms_top_n,
            test_pre_nms_top_n=test_pre_nms_top_n,
            num_convs=num_convs,
            mask_head_resolution=self.mask_head_resolution)
        inputs = model.generate_inputs()
        if mode == 'train':
            model_out = model.build_net(inputs)
            loss = model_out['loss']
            self.optimizer.minimize(loss)
            outputs = OrderedDict([('loss', model_out['loss']),
                                   ('loss_cls', model_out['loss_cls']),
                                   ('loss_bbox', model_out['loss_bbox']),
                                   ('loss_mask', model_out['loss_mask']),
                                   ('loss_rpn_cls', model_out['loss_rpn_cls']),
                                   ('loss_rpn_bbox',
                                    model_out['loss_rpn_bbox'])])
        else:
            outputs = model.build_net(inputs)
        return inputs, outputs

    def default_optimizer(self, learning_rate, warmup_steps, warmup_start_lr,
                          lr_decay_epochs, lr_decay_gamma,
                          num_steps_each_epoch):
        if warmup_steps > lr_decay_epochs[0] * num_steps_each_epoch:
            raise Exception("warmup_step should less than {}".format(
                lr_decay_epochs[0] * num_steps_each_epoch))
        boundaries = [b * num_steps_each_epoch for b in lr_decay_epochs]
        values = [(lr_decay_gamma**i) * learning_rate
                  for i in range(len(lr_decay_epochs) + 1)]
        lr_decay = fluid.layers.piecewise_decay(
            boundaries=boundaries, values=values)
        lr_warmup = fluid.layers.linear_lr_warmup(
            learning_rate=lr_decay,
            warmup_steps=warmup_steps,
            start_lr=warmup_start_lr,
            end_lr=learning_rate)
        optimizer = fluid.optimizer.Momentum(
            learning_rate=lr_warmup,
            momentum=0.9,
            regularization=fluid.regularizer.L2Decay(1e-04))
        return optimizer

    def train(self,
              num_epochs,
              train_dataset,
              train_batch_size=1,
              eval_dataset=None,
              save_interval_epochs=1,
              log_interval_steps=2,
              save_dir='output',
              pretrain_weights='IMAGENET',
              optimizer=None,
              learning_rate=1.0 / 800,
              warmup_steps=500,
              warmup_start_lr=1.0 / 2400,
              lr_decay_epochs=[8, 11],
              lr_decay_gamma=0.1,
              metric=None,
F
FlyingQianMM 已提交
131 132 133
              use_vdl=False,
              early_stop=False,
              early_stop_patience=5):
J
jiangjiajun 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
        """训练。

        Args:
            num_epochs (int): 训练迭代轮数。
            train_dataset (paddlex.datasets): 训练数据读取器。
            train_batch_size (int): 训练或验证数据batch大小。目前检测仅支持单卡评估,训练数据batch大小与
                显卡数量之商为验证数据batch大小。默认值为1。
            eval_dataset (paddlex.datasets): 验证数据读取器。
            save_interval_epochs (int): 模型保存间隔(单位:迭代轮数)。默认为1。
            log_interval_steps (int): 训练日志输出间隔(单位:迭代次数)。默认为20。
            save_dir (str): 模型保存路径。默认值为'output'。
            pretrain_weights (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',
                则自动下载在ImageNet图片数据上预训练的模型权重;若为None,则不使用预训练模型。默认为None。
            optimizer (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认优化器:
                fluid.layers.piecewise_decay衰减策略,fluid.optimizer.Momentum优化方法。
            learning_rate (float): 默认优化器的学习率。默认为1.0/800。
            warmup_steps (int):  默认优化器进行warmup过程的步数。默认为500。
            warmup_start_lr (int): 默认优化器warmup的起始学习率。默认为1.0/2400。
            lr_decay_epochs (list): 默认优化器的学习率衰减轮数。默认为[8, 11]。
            lr_decay_gamma (float): 默认优化器的学习率衰减率。默认为0.1。
            metric (bool): 训练过程中评估的方式,取值范围为['COCO', 'VOC']。
            use_vdl (bool): 是否使用VisualDL进行可视化。默认值为False。
F
FlyingQianMM 已提交
156 157 158
            early_stop (bool): 是否使用提前终止训练策略。默认值为False。
            early_stop_patience (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内
                连续下降或持平,则终止训练。默认值为5。
J
jiangjiajun 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172

        Raises:
            ValueError: 评估类型不在指定列表中。
            ValueError: 模型从inference model进行加载。
        """
        if metric is None:
            if isinstance(train_dataset, paddlex.datasets.CocoDetection):
                metric = 'COCO'
            else:
                raise Exception(
                    "train_dataset should be datasets.COCODetection.")
        assert metric in ['COCO', 'VOC'], "Metric only support 'VOC' or 'COCO'"
        self.metric = metric
        if not self.trainable:
J
jiangjiajun 已提交
173
            raise Exception("Model is not trainable from load_model method.")
J
jiangjiajun 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
        self.labels = copy.deepcopy(train_dataset.labels)
        self.labels.insert(0, 'background')
        # 构建训练网络
        if optimizer is None:
            # 构建默认的优化策略
            num_steps_each_epoch = train_dataset.num_samples // train_batch_size
            optimizer = self.default_optimizer(
                learning_rate=learning_rate,
                warmup_steps=warmup_steps,
                warmup_start_lr=warmup_start_lr,
                lr_decay_epochs=lr_decay_epochs,
                lr_decay_gamma=lr_decay_gamma,
                num_steps_each_epoch=num_steps_each_epoch)
        self.optimizer = optimizer
        # 构建训练、验证、测试网络
        self.build_program()
        fuse_bn = True
        if self.with_fpn and self.backbone in ['ResNet18', 'ResNet50']:
            fuse_bn = False
        self.net_initialize(
            startup_prog=fluid.default_startup_program(),
            pretrain_weights=pretrain_weights,
            fuse_bn=fuse_bn,
            save_dir=save_dir)
        # 训练
        self.train_loop(
            num_epochs=num_epochs,
            train_dataset=train_dataset,
            train_batch_size=train_batch_size,
            eval_dataset=eval_dataset,
            save_interval_epochs=save_interval_epochs,
            log_interval_steps=log_interval_steps,
            save_dir=save_dir,
F
FlyingQianMM 已提交
207 208 209
            use_vdl=use_vdl,
            early_stop=early_stop,
            early_stop_patience=early_stop_patience)
J
jiangjiajun 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363

    def evaluate(self,
                 eval_dataset,
                 batch_size=1,
                 epoch_id=None,
                 metric=None,
                 return_details=False):
        """评估。

        Args:
            eval_dataset (paddlex.datasets): 验证数据读取器。
            batch_size (int): 验证数据批大小。默认为1。
            epoch_id (int): 当前评估模型所在的训练轮数。
            metric (bool): 训练过程中评估的方式,取值范围为['COCO', 'VOC']。默认为None,
                根据用户传入的Dataset自动选择,如为VOCDetection,则metric为'VOC';
                如为COCODetection,则metric为'COCO'。
            return_details (bool): 是否返回详细信息。默认值为False。

        Returns:
            tuple (metrics, eval_details) /dict (metrics): 当return_details为True时,返回(metrics, eval_details),
                当return_details为False时,返回metrics。metrics为dict,包含关键字:'bbox_mmap'和'segm_mmap'
                或者’bbox_map‘和'segm_map',分别表示预测框和分割区域平均准确率平均值在
                各个IoU阈值下的结果取平均值的结果(mmAP)、平均准确率平均值(mAP)。eval_details为dict,
                包含关键字:'bbox',对应元素预测框结果列表,每个预测结果由图像id、预测框类别id、
                预测框坐标、预测框得分;'mask',对应元素预测区域结果列表,每个预测结果由图像id、
                预测区域类别id、预测区域坐标、预测区域得分;’gt‘:真实标注框和标注区域相关信息。
        """
        self.arrange_transforms(
            transforms=eval_dataset.transforms, mode='eval')
        if metric is None:
            if hasattr(self, 'metric') and self.metric is not None:
                metric = self.metric
            else:
                if isinstance(eval_dataset, paddlex.datasets.CocoDetection):
                    metric = 'COCO'
                else:
                    raise Exception(
                        "eval_dataset should be datasets.COCODetection.")
        assert metric in ['COCO', 'VOC'], "Metric only support 'VOC' or 'COCO'"
        data_generator = eval_dataset.generator(
            batch_size=batch_size, drop_last=False)

        total_steps = math.ceil(eval_dataset.num_samples * 1.0 / batch_size)
        results = list()
        logging.info(
            "Start to evaluating(total_samples={}, total_steps={})...".format(
                eval_dataset.num_samples, total_steps))
        for step, data in tqdm.tqdm(
                enumerate(data_generator()), total=total_steps):
            images = np.array([d[0] for d in data]).astype('float32')
            im_infos = np.array([d[1] for d in data]).astype('float32')
            im_shapes = np.array([d[3] for d in data]).astype('float32')
            feed_data = {
                'image': images,
                'im_info': im_infos,
                'im_shape': im_shapes,
            }
            outputs = self.exe.run(
                self.test_prog,
                feed=[feed_data],
                fetch_list=list(self.test_outputs.values()),
                return_numpy=False)
            res = {
                'bbox': (np.array(outputs[0]),
                         outputs[0].recursive_sequence_lengths()),
                'mask': (np.array(outputs[1]),
                         outputs[1].recursive_sequence_lengths())
            }
            res_im_id = [d[2] for d in data]
            res['im_info'] = (im_infos, [])
            res['im_shape'] = (im_shapes, [])
            res['im_id'] = (np.array(res_im_id), [])
            results.append(res)
            logging.debug("[EVAL] Epoch={}, Step={}/{}".format(
                epoch_id, step + 1, total_steps))

        ap_stats, eval_details = eval_results(
            results,
            'COCO',
            eval_dataset.coco_gt,
            with_background=True,
            resolution=self.mask_head_resolution)
        if metric == 'VOC':
            if isinstance(ap_stats[0], np.ndarray) and isinstance(
                    ap_stats[1], np.ndarray):
                metrics = OrderedDict(
                    zip(['bbox_map', 'segm_map'],
                        [ap_stats[0][1], ap_stats[1][1]]))
            else:
                metrics = OrderedDict(
                    zip(['bbox_map', 'segm_map'], [0.0, 0.0]))
        elif metric == 'COCO':
            if isinstance(ap_stats[0], np.ndarray) and isinstance(
                    ap_stats[1], np.ndarray):
                metrics = OrderedDict(
                    zip(['bbox_mmap', 'segm_mmap'],
                        [ap_stats[0][0], ap_stats[1][0]]))
            else:
                metrics = OrderedDict(
                    zip(['bbox_mmap', 'segm_mmap'], [0.0, 0.0]))
        if return_details:
            return metrics, eval_details
        return metrics

    def predict(self, img_file, transforms=None):
        """预测。

        Args:
            img_file (str): 预测图像路径。
            transforms (paddlex.det.transforms): 数据预处理操作。

        Returns:
            dict: 预测结果列表,每个预测结果由预测框类别标签、预测框类别名称、预测框坐标、预测框内的二值图、
                预测框得分组成。
        """
        if transforms is None and not hasattr(self, 'test_transforms'):
            raise Exception("transforms need to be defined, now is None.")
        if transforms is not None:
            self.arrange_transforms(transforms=transforms, mode='test')
            im, im_resize_info, im_shape = transforms(img_file)
        else:
            self.arrange_transforms(
                transforms=self.test_transforms, mode='test')
            im, im_resize_info, im_shape = self.test_transforms(img_file)
        im = np.expand_dims(im, axis=0)
        im_resize_info = np.expand_dims(im_resize_info, axis=0)
        im_shape = np.expand_dims(im_shape, axis=0)
        outputs = self.exe.run(
            self.test_prog,
            feed={
                'image': im,
                'im_info': im_resize_info,
                'im_shape': im_shape
            },
            fetch_list=list(self.test_outputs.values()),
            return_numpy=False)
        res = {
            k: (np.array(v), v.recursive_sequence_lengths())
            for k, v in zip(list(self.test_outputs.keys()), outputs)
        }
        res['im_id'] = (np.array([[0]]).astype('int32'), [])
        res['im_shape'] = (np.array(im_shape), [])
        clsid2catid = dict({i: i for i in range(self.num_classes)})
        xywh_results = bbox2out([res], clsid2catid)
        segm_results = mask2out([res], clsid2catid, self.mask_head_resolution)
        results = list()
        import pycocotools.mask as mask_util
        for index, xywh_res in enumerate(xywh_results):
            del xywh_res['image_id']
            xywh_res['mask'] = mask_util.decode(
                segm_results[index]['segmentation'])
            xywh_res['category'] = self.labels[xywh_res['category_id']]
            results.append(xywh_res)
        return results