#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. from __future__ import absolute_import import math import tqdm import numpy as np import paddle.fluid as fluid import paddlex.utils.logging as logging import paddlex import copy import os.path as osp from collections import OrderedDict from .faster_rcnn import FasterRCNN from .utils.detection_eval import eval_results, bbox2out, mask2out class MaskRCNN(FasterRCNN): """构建MaskRCNN,并实现其训练、评估、预测和模型导出。 Args: num_classes (int): 包含了背景类的类别数。默认为81。 backbone (str): MaskRCNN的backbone网络,取值范围为['ResNet18', 'ResNet50', 'ResNet50vd', 'ResNet101', 'ResNet101vd']。默认为'ResNet50'。 with_fpn (bool): 是否使用FPN结构。默认为True。 aspect_ratios (list): 生成anchor高宽比的可选值。默认为[0.5, 1.0, 2.0]。 anchor_sizes (list): 生成anchor大小的可选值。默认为[32, 64, 128, 256, 512]。 """ def __init__(self, num_classes=81, backbone='ResNet50', with_fpn=True, aspect_ratios=[0.5, 1.0, 2.0], anchor_sizes=[32, 64, 128, 256, 512]): self.init_params = locals() backbones = [ 'ResNet18', 'ResNet50', 'ResNet50vd', 'ResNet101', 'ResNet101vd' ] assert backbone in backbones, "backbone should be one of {}".format( backbones) super(FasterRCNN, self).__init__('detector') self.backbone = backbone self.num_classes = num_classes self.with_fpn = with_fpn self.anchor_sizes = anchor_sizes self.labels = None if with_fpn: self.mask_head_resolution = 28 else: self.mask_head_resolution = 14 def build_net(self, mode='train'): train_pre_nms_top_n = 2000 if self.with_fpn else 12000 test_pre_nms_top_n = 1000 if self.with_fpn else 6000 num_convs = 4 if self.with_fpn else 0 model = paddlex.cv.nets.detection.MaskRCNN( backbone=self._get_backbone(self.backbone), num_classes=self.num_classes, mode=mode, with_fpn=self.with_fpn, train_pre_nms_top_n=train_pre_nms_top_n, test_pre_nms_top_n=test_pre_nms_top_n, num_convs=num_convs, mask_head_resolution=self.mask_head_resolution) inputs = model.generate_inputs() if mode == 'train': model_out = model.build_net(inputs) loss = model_out['loss'] self.optimizer.minimize(loss) outputs = OrderedDict([('loss', model_out['loss']), ('loss_cls', model_out['loss_cls']), ('loss_bbox', model_out['loss_bbox']), ('loss_mask', model_out['loss_mask']), ('loss_rpn_cls', model_out['loss_rpn_cls']), ('loss_rpn_bbox', model_out['loss_rpn_bbox'])]) else: outputs = model.build_net(inputs) return inputs, outputs def default_optimizer(self, learning_rate, warmup_steps, warmup_start_lr, lr_decay_epochs, lr_decay_gamma, num_steps_each_epoch): if warmup_steps > lr_decay_epochs[0] * num_steps_each_epoch: raise Exception("warmup_step should less than {}".format( lr_decay_epochs[0] * num_steps_each_epoch)) boundaries = [b * num_steps_each_epoch for b in lr_decay_epochs] values = [(lr_decay_gamma**i) * learning_rate for i in range(len(lr_decay_epochs) + 1)] lr_decay = fluid.layers.piecewise_decay( boundaries=boundaries, values=values) lr_warmup = fluid.layers.linear_lr_warmup( learning_rate=lr_decay, warmup_steps=warmup_steps, start_lr=warmup_start_lr, end_lr=learning_rate) optimizer = fluid.optimizer.Momentum( learning_rate=lr_warmup, momentum=0.9, regularization=fluid.regularizer.L2Decay(1e-04)) return optimizer def train(self, num_epochs, train_dataset, train_batch_size=1, eval_dataset=None, save_interval_epochs=1, log_interval_steps=2, save_dir='output', pretrain_weights='IMAGENET', optimizer=None, learning_rate=1.0 / 800, warmup_steps=500, warmup_start_lr=1.0 / 2400, lr_decay_epochs=[8, 11], lr_decay_gamma=0.1, metric=None, use_vdl=False, early_stop=False, early_stop_patience=5): """训练。 Args: num_epochs (int): 训练迭代轮数。 train_dataset (paddlex.datasets): 训练数据读取器。 train_batch_size (int): 训练或验证数据batch大小。目前检测仅支持单卡评估,训练数据batch大小与 显卡数量之商为验证数据batch大小。默认值为1。 eval_dataset (paddlex.datasets): 验证数据读取器。 save_interval_epochs (int): 模型保存间隔(单位:迭代轮数)。默认为1。 log_interval_steps (int): 训练日志输出间隔(单位:迭代次数)。默认为20。 save_dir (str): 模型保存路径。默认值为'output'。 pretrain_weights (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET', 则自动下载在ImageNet图片数据上预训练的模型权重;若为None,则不使用预训练模型。默认为None。 optimizer (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认优化器: fluid.layers.piecewise_decay衰减策略,fluid.optimizer.Momentum优化方法。 learning_rate (float): 默认优化器的学习率。默认为1.0/800。 warmup_steps (int): 默认优化器进行warmup过程的步数。默认为500。 warmup_start_lr (int): 默认优化器warmup的起始学习率。默认为1.0/2400。 lr_decay_epochs (list): 默认优化器的学习率衰减轮数。默认为[8, 11]。 lr_decay_gamma (float): 默认优化器的学习率衰减率。默认为0.1。 metric (bool): 训练过程中评估的方式,取值范围为['COCO', 'VOC']。 use_vdl (bool): 是否使用VisualDL进行可视化。默认值为False。 early_stop (bool): 是否使用提前终止训练策略。默认值为False。 early_stop_patience (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内 连续下降或持平,则终止训练。默认值为5。 Raises: ValueError: 评估类型不在指定列表中。 ValueError: 模型从inference model进行加载。 """ if metric is None: if isinstance(train_dataset, paddlex.datasets.CocoDetection): metric = 'COCO' else: raise Exception( "train_dataset should be datasets.COCODetection.") assert metric in ['COCO', 'VOC'], "Metric only support 'VOC' or 'COCO'" self.metric = metric if not self.trainable: raise Exception("Model is not trainable from load_model method.") self.labels = copy.deepcopy(train_dataset.labels) self.labels.insert(0, 'background') # 构建训练网络 if optimizer is None: # 构建默认的优化策略 num_steps_each_epoch = train_dataset.num_samples // train_batch_size optimizer = self.default_optimizer( learning_rate=learning_rate, warmup_steps=warmup_steps, warmup_start_lr=warmup_start_lr, lr_decay_epochs=lr_decay_epochs, lr_decay_gamma=lr_decay_gamma, num_steps_each_epoch=num_steps_each_epoch) self.optimizer = optimizer # 构建训练、验证、测试网络 self.build_program() fuse_bn = True if self.with_fpn and self.backbone in ['ResNet18', 'ResNet50']: fuse_bn = False self.net_initialize( startup_prog=fluid.default_startup_program(), pretrain_weights=pretrain_weights, fuse_bn=fuse_bn, save_dir=save_dir) # 训练 self.train_loop( num_epochs=num_epochs, train_dataset=train_dataset, train_batch_size=train_batch_size, eval_dataset=eval_dataset, save_interval_epochs=save_interval_epochs, log_interval_steps=log_interval_steps, save_dir=save_dir, use_vdl=use_vdl, early_stop=early_stop, early_stop_patience=early_stop_patience) def evaluate(self, eval_dataset, batch_size=1, epoch_id=None, metric=None, return_details=False): """评估。 Args: eval_dataset (paddlex.datasets): 验证数据读取器。 batch_size (int): 验证数据批大小。默认为1。 epoch_id (int): 当前评估模型所在的训练轮数。 metric (bool): 训练过程中评估的方式,取值范围为['COCO', 'VOC']。默认为None, 根据用户传入的Dataset自动选择,如为VOCDetection,则metric为'VOC'; 如为COCODetection,则metric为'COCO'。 return_details (bool): 是否返回详细信息。默认值为False。 Returns: tuple (metrics, eval_details) /dict (metrics): 当return_details为True时,返回(metrics, eval_details), 当return_details为False时,返回metrics。metrics为dict,包含关键字:'bbox_mmap'和'segm_mmap' 或者’bbox_map‘和'segm_map',分别表示预测框和分割区域平均准确率平均值在 各个IoU阈值下的结果取平均值的结果(mmAP)、平均准确率平均值(mAP)。eval_details为dict, 包含关键字:'bbox',对应元素预测框结果列表,每个预测结果由图像id、预测框类别id、 预测框坐标、预测框得分;'mask',对应元素预测区域结果列表,每个预测结果由图像id、 预测区域类别id、预测区域坐标、预测区域得分;’gt‘:真实标注框和标注区域相关信息。 """ self.arrange_transforms( transforms=eval_dataset.transforms, mode='eval') if metric is None: if hasattr(self, 'metric') and self.metric is not None: metric = self.metric else: if isinstance(eval_dataset, paddlex.datasets.CocoDetection): metric = 'COCO' else: raise Exception( "eval_dataset should be datasets.COCODetection.") assert metric in ['COCO', 'VOC'], "Metric only support 'VOC' or 'COCO'" data_generator = eval_dataset.generator( batch_size=batch_size, drop_last=False) total_steps = math.ceil(eval_dataset.num_samples * 1.0 / batch_size) results = list() logging.info( "Start to evaluating(total_samples={}, total_steps={})...".format( eval_dataset.num_samples, total_steps)) for step, data in tqdm.tqdm( enumerate(data_generator()), total=total_steps): images = np.array([d[0] for d in data]).astype('float32') im_infos = np.array([d[1] for d in data]).astype('float32') im_shapes = np.array([d[3] for d in data]).astype('float32') feed_data = { 'image': images, 'im_info': im_infos, 'im_shape': im_shapes, } outputs = self.exe.run( self.test_prog, feed=[feed_data], fetch_list=list(self.test_outputs.values()), return_numpy=False) res = { 'bbox': (np.array(outputs[0]), outputs[0].recursive_sequence_lengths()), 'mask': (np.array(outputs[1]), outputs[1].recursive_sequence_lengths()) } res_im_id = [d[2] for d in data] res['im_info'] = (im_infos, []) res['im_shape'] = (im_shapes, []) res['im_id'] = (np.array(res_im_id), []) results.append(res) logging.debug("[EVAL] Epoch={}, Step={}/{}".format( epoch_id, step + 1, total_steps)) ap_stats, eval_details = eval_results( results, 'COCO', eval_dataset.coco_gt, with_background=True, resolution=self.mask_head_resolution) if metric == 'VOC': if isinstance(ap_stats[0], np.ndarray) and isinstance( ap_stats[1], np.ndarray): metrics = OrderedDict( zip(['bbox_map', 'segm_map'], [ap_stats[0][1], ap_stats[1][1]])) else: metrics = OrderedDict( zip(['bbox_map', 'segm_map'], [0.0, 0.0])) elif metric == 'COCO': if isinstance(ap_stats[0], np.ndarray) and isinstance( ap_stats[1], np.ndarray): metrics = OrderedDict( zip(['bbox_mmap', 'segm_mmap'], [ap_stats[0][0], ap_stats[1][0]])) else: metrics = OrderedDict( zip(['bbox_mmap', 'segm_mmap'], [0.0, 0.0])) if return_details: return metrics, eval_details return metrics def predict(self, img_file, transforms=None): """预测。 Args: img_file (str): 预测图像路径。 transforms (paddlex.det.transforms): 数据预处理操作。 Returns: dict: 预测结果列表,每个预测结果由预测框类别标签、预测框类别名称、预测框坐标、预测框内的二值图、 预测框得分组成。 """ if transforms is None and not hasattr(self, 'test_transforms'): raise Exception("transforms need to be defined, now is None.") if transforms is not None: self.arrange_transforms(transforms=transforms, mode='test') im, im_resize_info, im_shape = transforms(img_file) else: self.arrange_transforms( transforms=self.test_transforms, mode='test') im, im_resize_info, im_shape = self.test_transforms(img_file) im = np.expand_dims(im, axis=0) im_resize_info = np.expand_dims(im_resize_info, axis=0) im_shape = np.expand_dims(im_shape, axis=0) outputs = self.exe.run( self.test_prog, feed={ 'image': im, 'im_info': im_resize_info, 'im_shape': im_shape }, fetch_list=list(self.test_outputs.values()), return_numpy=False) res = { k: (np.array(v), v.recursive_sequence_lengths()) for k, v in zip(list(self.test_outputs.keys()), outputs) } res['im_id'] = (np.array([[0]]).astype('int32'), []) res['im_shape'] = (np.array(im_shape), []) clsid2catid = dict({i: i for i in range(self.num_classes)}) xywh_results = bbox2out([res], clsid2catid) segm_results = mask2out([res], clsid2catid, self.mask_head_resolution) results = list() import pycocotools.mask as mask_util for index, xywh_res in enumerate(xywh_results): del xywh_res['image_id'] xywh_res['mask'] = mask_util.decode( segm_results[index]['segmentation']) xywh_res['category'] = self.labels[xywh_res['category_id']] results.append(xywh_res) return results