model_zoo.md 5.9 KB
Newer Older
J
jiangjiajun 已提交
1 2
# PaddleX模型库

J
jiangjiajun 已提交
3 4 5 6 7 8
## 图像分类模型
> 表中模型相关指标均为在ImageNet数据集上使用PaddlePaddle Python预测接口测试得到(测试GPU型号为Nvidia Tesla P40),预测速度为每张图片预测用时(不包括预处理和后处理),表中符号`-`表示相关指标暂未测试。


| 模型  | 模型大小 | 预测速度(毫秒) | Top1准确率(%) | Top5准确率(%) |
| :----|  :------- | :----------- | :--------- | :--------- |
S
sunyanfang01 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
| [ResNet18](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_pretrained.tar)| 46.2MB   | 3.72882        | 71.0     | 89.9     |
| [ResNet34](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar)| 87.9MB   | 5.50876        | 74.6    | 92.1    |
| [ResNet50](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar)| 103.4MB  | 7.76659       | 76.5     | 93.0     |
| [ResNet101](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar) |180.4MB  | 13.80876      | 77.6     | 93.6  |
| [ResNet50_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar) |103.5MB  | 8.20476       | 79.1     | 94.4     |
| [ResNet101_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar)| 180.5MB  | 14.24643       | 80.2   | 95.0     |
| [ResNet50_vd_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_ssld_pretrained.tar) |103.5MB  | 7.79264       | 82.4     | 96.1     |
| [ResNet101_vd_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_ssld_pretrained.tar)| 180.5MB  | 13.34580       | 83.7   | 96.7     |
| [DarkNet53](https://paddle-imagenet-models-name.bj.bcebos.com/DarkNet53_ImageNet1k_pretrained.tar)|167.4MB  | 8.82047       | 78.0     | 94.1     |
| [MobileNetV1](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar) | 17.4MB   | 3.42838        | 71.0     | 89.7    |
| [MobileNetV2](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) | 15.0MB   | 5.92667        | 72.2     | 90.7    |
| [MobileNetV3_large](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_pretrained.tar)|  22.8MB   | 8.31428        | 75.3    | 93.2   |
| [MobileNetV3_small](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_pretrained.tar) |  12.5MB   | 7.30689        | 68.2    | 88.1     |
| [MobileNetV3_large_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_ssld_pretrained.tar)|  22.8MB   | 8.06651        | 79.0     | 94.5     |
| [MobileNetV3_small_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_ssld_pretrained.tar) |  12.5MB   | 7.08837        | 71.3     | 90.1     |
| [Xception41](https://paddle-imagenet-models-name.bj.bcebos.com/Xception41_deeplab_pretrained.tar) | 109.2MB   | 8.15611      | 79.6    | 94.4     |
| [Xception65](https://paddle-imagenet-models-name.bj.bcebos.com/Xception65_deeplab_pretrained.tar) | 161.6MB  | 13.87017       | 80.3     | 94.5     |
| [DenseNet121](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet121_pretrained.tar) | 33.1MB   | 17.09874       | 75.7     | 92.6     |
| [DenseNet161](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet161_pretrained.tar)| 118.0MB  | 22.79690       | 78.6     | 94.1     |
| [DenseNet201](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet201_pretrained.tar)|  84.1MB   | 25.26089       | 77.6     | 93.7     |
| [ShuffleNetV2](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_pretrained.tar) | 10.2MB   | 15.40138        | 68.8     | 88.5     |
| [HRNet_W18](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W18_C_pretrained.tar) | 21.29MB |45.25514  | 76.9 | 93.4 |
J
jiangjiajun 已提交
31 32 33

## 目标检测模型

S
modify  
sunyanfang01 已提交
34
> 表中模型相关指标均为在MSCOCO数据集上使用PaddlePaddle Python预测接口测试得到(测试GPU型号为Nvidia Tesla V100测试得到),表中符号`-`表示相关指标暂未测试。
J
jiangjiajun 已提交
35 36 37

| 模型    | 模型大小    | 预测时间(毫秒) | BoxAP(%) |
|:-------|:-----------|:-------------|:----------|
S
sunyanfang01 已提交
38 39 40 41 42
|[FasterRCNN-ResNet50](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_1x.tar)|136.0MB| 197.715 | 35.2 |
|[FasterRCNN-ResNet50_vd](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_1x.tar)| 136.1MB | 475.700 | 36.4 |
|[FasterRCNN-ResNet101](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_1x.tar)| 212.5MB | 582.911 | 38.3 |
|[FasterRCNN-ResNet50-FPN](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_fpn_1x.tar)| 167.7MB | 83.189 | 37.2 |
|[FasterRCNN-ResNet50_vd-FPN](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_fpn_2x.tar)|167.8MB | 128.277 | 38.9 |
F
FlyingQianMM 已提交
43 44
|[FasterRCNN-ResNet101-FPN](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_1x.tar)| 244.2MB | 119.788 | 38.7 |
|[FasterRCNN-ResNet101_vd-FPN](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_vd_fpn_2x.tar) |244.3MB | 156.097 | 40.5 |
S
sunyanfang01 已提交
45 46 47 48 49
|[FasterRCNN-HRNet_W18-FPN](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_hrnetv2p_w18_1x.tar) |115.5MB | 81.592 | 36 |
|[YOLOv3-DarkNet53](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar)|249.2MB | 42.672 | 38.9 |
|[YOLOv3-MobileNetV1](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |99.2MB | 15.442 | 29.3 |
|[YOLOv3-MobileNetV3_large](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3.pdparams)|100.7MB | 143.322 | 31.6 |
| [YOLOv3-ResNet34](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar)|170.3MB | 23.185 | 36.2 |
J
jiangjiajun 已提交
50 51 52 53

## 实例分割模型

> 表中模型相关指标均为在MSCOCO数据集上测试得到。
S
sunyanfang01 已提交
54 55 56 57 58 59 60 61

| 模型    | 模型大小    | 预测时间(毫秒) | mIoU(%) |
|:-------|:-----------|:-------------|:----------|
|DeepLabv3+-MobileNetV2_x1.0|-| - | - |
|DeepLabv3+-Xception41|-| - | - |
|DeepLabv3+-Xception65|-| - | - |
|UNet|-| - | - |
|HRNet_w18|-| - | - |