提交 e3554061 编写于 作者: J jiangjiajun

new doc structure

上级 c7e7a90d
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
{% extends "!layout.html" %}
{% block footer %} {{ super() }}
<style>
.wy-nav-content { max-width: 1080px; }
</style>
{% endblock %}
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
接口说明
PaddleX API说明文档
============================
.. toctree::
......
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
......@@ -7,7 +7,7 @@ Anaconda是一个开源的Python发行版本,其包含了conda、Python等180
### 第二步 安装
运行下载的安装包(以.exe为后辍),根据引导完成安装, 用户可自行修改安装目录(如下图)
![](./images/anaconda_windows.png)
![](../images/anaconda_windows.png)
### 第三步 使用
- 点击Windows系统左下角的Windows图标,打开:所有程序->Anaconda3/2(64-bit)->Anaconda Prompt
......
附录
=======================================
.. toctree::
:maxdepth: 2
:caption: 目录:
quick_start.md
install.md
tutorials/index.rst
model_zoo.md
apis/index
client_use.md
update.md
FAQ.md
appendix/index.rst
* PaddleX版本: v0.1.7
* 项目官网: http://www.paddlepaddle.org.cn/paddle/paddlex
* 项目GitHub: https://github.com/PaddlePaddle/PaddleX/tree/develop
* 官方QQ用户群: 1045148026
* GitHub Issue反馈: http://www.github.com/PaddlePaddle/PaddleX/issues
# 模型库
本文档梳理了PaddleX v0.1.0支持的模型,同时也提供了在各个数据集上的预训练模型和对应验证集上的指标。用户也可自行下载对应的代码,在安装PaddleX后,即可使用相应代码训练模型。
表中相关模型也可下载好作为相应模型的预训练模型,通过`pretrain_weights`指定目录加载使用。
## 图像分类模型
> 表中模型相关指标均为在ImageNet数据集上使用PaddlePaddle Python预测接口测试得到(测试GPU型号为Nvidia Tesla P40),预测速度为每张图片预测用时(不包括预处理和后处理),表中符号`-`表示相关指标暂未测试。
| 模型 | 模型大小 | 预测速度(毫秒) | Top1准确率(%) | Top5准确率(%) |
| :----| :------- | :----------- | :--------- | :--------- |
| ResNet18| 46.9MB | 1.3568 | 71.0 | 89.9 |
| ResNet34| 87.5MB | 2.23092 | 74.6 | 92.1 |
| ResNet50| 102.7MB | 2.63824 | 76.5 | 93.0 |
| ResNet101 |179.1MB | 5.04037 | 77.6 | 93.6 |
| ResNet50_vd |102.8MB | 2.65164 | 79.1 | 94.4 |
| ResNet101_vd| 179.2MB | 5.05972 | 80.2 | 95.0 |
| ResNet50_vd_ssld |102.8MB | 2.65164 | 82.4 | 96.1 |
| ResNet101_vd_ssld| 179.2MB | 5.05972 | 83.7 | 96.7 |
| DarkNet53|166.9MB | 3.18101 | 78.0 | 94.1 |
| MobileNetV1 | 16.0MB | 0.71942 | 71.0 | 89.7 |
| MobileNetV2 | 14.0MB | 2.78603 | 72.2 | 90.7 |
| MobileNetV3_large| 21.0MB | 2.20149 | 75.3 | 93.2 |
| MobileNetV3_small | 12.0MB | 1.73933 | 68.2 | 88.1 |
| MobileNetV3_large_ssld| 21.0MB | 2.20149 | 79.0 | 94.5 |
| MobileNetV3_small_ssld | 12.0MB | 1.73933 | 71.3 | 90.1 |
| Xception41 |92.4MB | 2.85934 | 79.6 | 94.4 |
| Xception65 | 144.6MB | 4.06803 | 80.3 | 94.5 |
| DenseNet121 | 32.8MB | 4.16436 | 75.7 | 92.6 |
| DenseNet161|116.3MB | 9.27249 | 78.6 | 94.1 |
| DenseNet201| 84.6MB | 7.9617 | 77.6 | 93.7 |
| ShuffleNetV2 | 9.0MB | 1.95064 | 68.8 | 88.5 |
| ResNet18| 46.9MB | 1.499 | 71.0 | 89.9 |
| ResNet34| 87.5MB | 2.272 | 74.6 | 92.1 |
| ResNet50| 102.7MB | 2.939 | 76.5 | 93.0 |
| ResNet101 |179.1MB | 5.314 | 77.6 | 93.6 |
| ResNet50_vd |102.8MB | 3.165 | 79.1 | 94.4 |
| ResNet101_vd| 179.2MB | 5.252 | 80.2 | 95.0 |
| ResNet50_vd_ssld |102.8MB | 3.165 | 82.4 | 96.1 |
| ResNet101_vd_ssld| 179.2MB | 5.252 | 83.7 | 96.7 |
| DarkNet53|166.9MB | 3.139 | 78.0 | 94.1 |
| MobileNetV1 | 16.0MB | 32.523 | 71.0 | 89.7 |
| MobileNetV2 | 14.0MB | 23.318 | 72.2 | 90.7 |
| MobileNetV3_large| 21.0MB | 19.308 | 75.3 | 93.2 |
| MobileNetV3_small | 12.0MB | 6.546 | 68.2 | 88.1 |
| MobileNetV3_large_ssld| 21.0MB | 19.308 | 79.0 | 94.5 |
| MobileNetV3_small_ssld | 12.0MB | 6.546 | 71.3 | 90.1 |
| Xception41 |92.4MB | 4.408 | 79.6 | 94.4 |
| Xception65 | 144.6MB | 6.464 | 80.3 | 94.5 |
| DenseNet121 | 32.8MB | 4.371 | 75.7 | 92.6 |
| DenseNet161|116.3MB | 8.863 | 78.6 | 94.1 |
| DenseNet201| 84.6MB | 8.173 | 77.6 | 93.7 |
| ShuffleNetV2 | 9.0MB | 10.941 | 68.8 | 88.5 |
## 目标检测模型
......@@ -53,20 +48,3 @@
> 表中模型相关指标均为在MSCOCO数据集上测试得到。
| 模型 |模型大小 | 预测时间(毫秒) | BoxAP | SegAP(%) |
|:---------|:---------|:----------|:---------|:--------|
|MaskRCNN-ResNet50|51.2MB| 86.096 | 36.5 |32.2|
|MaskRCNN-ResNet50-FPN|184.6MB | 65.859 | 37.9 |34.2|
|MaskRCNN-ResNet50_vd-FPN |185.5MB | 63.191 | 39.8 |35.4|
|MaskRCNN-ResNet101-FPN|268.6MB | 77.024 | 39.5 |35.2|
|MaskRCNN-ResNet101vd-FPN |268.6MB | 76.307 | 41.4 |36.8|
## 语义分割模型
> 表中符号`-`表示相关指标暂未测试。
| 模型| 模型大小 | 预测速度 | mIOU |
|:--------|:----------|:----------|:----------|
| UNet|53.7M | - |-|
| DeepLabv3+/Xception65| 165.1M |- | 0.7930 |
| DeepLabv3+/MobileNetV2 | 7.4M | - | 0.6981 |
文件模式从 100644 更改为 100755
# 模型转换
## 转ONNX模型
PaddleX基于[Paddle2ONNX工具](https://github.com/PaddlePaddle/paddle2onnx),提供了便捷的API,支持用户将PaddleX训练保存的模型导出为ONNX模型。
通过如下示例代码,用户即可将PaddleX训练好的MobileNetV2模型导出
```
import paddlex as pdx
pdx.convertor.to_onnx(model_dir='paddle_mobilenet', save_dir='onnx_mobilenet')
```
## 转PaddleLite模型
PaddleX可支持导出为[PaddleLite](https://github.com/PaddlePaddle/Paddle-Lite)支持的模型格式,用于支持用户将模型部署更多硬件设备。
通过如下示例代码,用户即可将PaddleX训练好的MobileNetV2模型导出
```
import paddlex as pdx
pdx.convertor.to_lite(model_dir='paddle_mobilenet', save_dir='lite_mobilnet', terminal='arm')
```
# PaddleX视觉方案介绍
PaddleX目前提供了4种视觉任务解决方案,分别为图像分类、目标检测、实例分割和语义分割。用户可以根据自己的任务类型按需选取。
## 图像分类
图像分类任务指的是输入一张图片,模型预测图片的类别,如识别为风景、动物、车等。
![](./images/image_classification.png)
对于图像分类任务,针对不同的应用场景,PaddleX提供了百度改进的模型,见下表所示
| 模型 | 模型大小 | GPU预测速度 | CPU预测速度 | ARM芯片预测速度 | 准确率 | 备注 |
| :--------- | :------ | :---------- | :-----------| :------------- | :----- | :--- |
| MobileNetV3_small_ssld | 12M | ? | ? | ? | 71.3% |适用于移动端场景 |
| MobileNetV3_large_ssld | 21M | ? | ? | ? | 79.0% | 适用于移动端/服务端场景 |
| ResNet50_vd_ssld | 102.8MB | ? | ? | ? | 82.4% | 适用于服务端场景 |
| ResNet101_vd_ssld | 179.2MB | ? | ? | ? |83.7% | 适用于服务端场景 |
除上述模型外,PaddleX还支持近20种图像分类模型,模型列表可参考[PaddleX模型库](../appendix/model_zoo.md)
## 目标检测
目标检测任务指的是输入图像,模型识别出图像中物体的位置(用矩形框框出来,并给出框的位置),和物体的类别,如在手机等零件质检中,用于检测外观上的瑕疵等。
![](./images/object_detection.png)
对于目标检测,针对不同的应用场景,PaddleX提供了主流的YOLOv3模型和Faster-RCNN模型,见下表所示
| 模型 | 模型大小 | GPU预测速度 | CPU预测速度 |ARM芯片预测速度 | BoxMAP | 备注 |
| :------- | :------- | :--------- | :---------- | :------------- | :----- | :--- |
| YOLOv3-MobileNetV1 | 101.2M | ? | ? | ? | 29.3 | |
| YOLOv3-MobileNetV3 | 94.6M | ? | ? | ? | 31.6 | |
| YOLOv3-ResNet34 | 169.7M | ? | ? | ? | 36.2 | |
| YOLOv3-DarkNet53 | 252.4 | ? | ? | ? | 38.9 | |
除YOLOv3模型外,PaddleX同时也支持FasterRCNN模型,支持FPN结构和5种backbone网络,详情可参考[PaddleX模型库](../appendix/model_zoo.md)
## 实例分割
在目标检测中,模型识别出图像中物体的位置和物体的类别。而实例分割则是在目标检测的基础上,做了像素级的分类,将框内的属于目标物体的像素识别出来。
![](./images/instance_segmentation.png)
PaddleX目前提供了实例分割MaskRCNN模型,支持5种不同的backbone网络,详情可参考[PaddleX模型库](../appendix/model_zoo.md)
| 模型 | 模型大小 | GPU预测速度 | CPU预测速度 | ARM芯片预测速度 | BoxMAP | SegMAP | 备注 |
| :---- | :------- | :---------- | :---------- | :------------- | :----- | :----- | :--- |
| MaskRCNN-ResNet50_vd-FPN | 185.5M | ? | ? | ? | 39.8 | 35.4 | |
| MaskRCNN-ResNet101_vd-FPN | 268.6M | ? | ? | ? | 41.4 | 36.8 | |
## 语义分割
语义分割用于对图像做像素级的分类,应用在人像分类、遥感图像识别等场景。
![](./images/semantic_segmentation.png)
对于语义分割,PaddleX也针对不同的应用场景,提供了不同的模型选择,如下表所示
| 模型 | 模型大小 | GPU预测速度 | CPU预测速度 | ARM芯片预测速度 | mIOU | 备注 |
| :---- | :------- | :---------- | :---------- | :------------- | :----- | :----- |
| DeepLabv3p-MobileNetV2_x0.25 | | ? | ? | ? | ? | ? |
| DeepLabv3p-MobileNetV2_x1.0 | | ? | ? | ? | ? | ? |
| DeepLabv3p-Xception65 | | ? | ? | ? | ? | ? |
| UNet | | ? | ? | ? | ? | ? |
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
欢迎使用PaddleX!
=======================================
PaddleX是基于飞桨技术生态的深度学习全流程开发工具。具备易集成,易使用,全流程等特点。PaddleX作为深度学习开发工具,不仅提供了开源的内核代码,可供用户灵活使用或集成,同时也提供了配套的前端可视化客户端套件,让用户以可视化地方式进行模型开发,相关细节可查阅PaddleX官网
PaddleX是基于飞桨核心框架、开发套件和工具组件的深度学习全流程开发工具。具备 **全流程打通** 、**融合产业实践** 、**易用易集成** 三大特点
本文档为PaddleX内核代码使用手册
全流程打通
| - **数据准备**: 支持LabelMe,精灵标注等主流数据标注工具协议,同时无缝集成 `EasyData智能数据服务平台 <https://ai.baidu.com/easydata/>`_ ,助力开发者高效获取AI开发所需高质量数据。
| - **模型训练**: 基于飞桨核心框架集成 `PaddleClas <https://github.com/PaddlePaddle/PaddleClas>`_ ,`PaddleDetection <https://github.com/PaddlePaddle/PaddleDetection>`_ ,`PaddleSeg <https://github.com/PaddlePaddle/PaddleSeg>`_ 视觉开发套件 ,`VisualDL <https://github.com/PaddlePaddle/VisualDL>`_ 可视化分析组件,高效完成模型训练。
| _ **多端部署**: 内置 `PaddleSlim <https://github.com/PaddlePaddle/PaddleSlim>`_ 模型压缩工具和AES模型加密SDK,结合Paddle Inference和 `Paddle Lite <https://github.com/PaddlePaddle/Paddle-Lite>`_ 便捷完成高性能且可靠的多端部署。
融合产业实践
| - 精选飞桨产业实践的成熟模型结构,开放案例实践教程,加速开发者产业落地。
| - 通过 `PaddleHub <https://github.com/PaddlePaddle/PaddleHub>`_ 内置丰富的飞桨高质量预训练模型,助力开发者高效实现飞桨Master模式。
易用易集成
| - PadldeX提供简洁易用的全流程API,几行代码即可实现上百种数据增强、模型可解释性、C++模型部署等功能。
| - 提供以PaddleX API为核心集成的跨平台GUI界面,降低深度学习全流程应用门槛。
.. toctree::
:maxdepth: 1
:caption: 目录:
:maxdepth: 2
:caption: 文档目录:
quick_start.md
install.md
model_zoo.md
slim/index
apis/index
datasets.md
gpu_configure.md
tutorials/index.rst
metrics.md
deploy.md
client_use.md
cv_solutions.md
apis/index
paddlex_gui.md
update.md
FAQ.md
appendix/index.rst
* PaddleX版本: v0.1.7
* 项目官网: http://www.paddlepaddle.org.cn/paddle/paddlex
......
# 安装
# 快速安装
以下安装过程默认用户已安装好**paddlepaddle-gpu或paddlepaddle(版本大于或等于1.7.1)**,paddlepaddle安装方式参照[飞桨官网](https://www.paddlepaddle.org.cn/install/quick)
> 推荐使用Anaconda Python环境,Anaconda下安装PaddleX参考文档[Anaconda安装使用](./anaconda_install.md)
> 推荐使用Anaconda Python环境,Anaconda下安装PaddleX参考文档[Anaconda安装使用](../appendix/anaconda_install.md)
## Github代码安装
github代码会跟随开发进度不断更新
......
文件模式从 100644 更改为 100755
# 使用PaddleX客户端进行模型训练
# PaddleX-GUI使用文档
**第一步:下载PaddleX客户端**
......
......@@ -2,6 +2,8 @@
本文档在一个小数据集上展示了如何通过PaddleX进行训练,您可以阅读PaddleX的**使用教程**来了解更多模型任务的训练使用方式。本示例同步在AIStudio上,可直接[在线体验模型训练](https://aistudio.baidu.com/aistudio/projectdetail/439860)
pip install
## 1. 准备蔬菜分类数据集
```
wget https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz
......
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
# 数据准备
## 数据标注
## 主流标注软件支持
## EasyData数据标注支持
多端部署
==============
使用教程
PaddleX全流程开发教程
=========================
.. toctree::
:maxdepth: 1
dataset_prepare.md
train/index.rst
compress/index.rst
deploy/index.rst
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
# 更新日志
.
./._tutorials
./._README.md
./._FAQ.md
./apis/._visualize.md
./apis/._deploy.md
./apis/._images
./apis/._models.md
./apis/transforms/._cls_transforms.md
./apis/transforms/._seg_transforms.md
./apis/transforms/._det_transforms.md
./apis/transforms/._index.rst
./apis/._datasets.md
./apis/images/._insect_bbox_pr_curve(iou-0.5).png
./apis/._transforms
./apis/._load_model.md
./apis/._slim.md
./apis/._index.rst
./._images
./._conf.py
./._cv_solutions.md
./._make.bat
./images/._voc_eval.png
./images/._08_deploy.png
./images/._paddlex.png
./images/._vdl2.jpg
./images/._05_train.png
./images/._faster_eval.png
./images/._object_detection.png
./images/._visualized_deeplab.jpg
./images/._02_newproject.png
./images/._PaddleX-Pipe-Line.png
./images/._visualized_fasterrcnn.jpg
./images/._04_parameter.png
./images/._cls_train.png
./images/._instance_segmentation.png
./images/._paddlex.jpg
./images/._anaconda_windows.png
./images/._00_loaddata.png
./images/._mask_train.png
./images/._seg_train.png
./images/._yolo_train.png
./images/._faster_train.png
./images/._cls_eval.png
./images/._mask_eval.png
./images/._06_VisualDL.png
./images/._seg_eval.png
./images/._visualized_maskrcnn.jpeg
./images/._QQGroup.jpeg
./images/._garbage.bmp
./images/._semantic_segmentation.png
./images/._03_choosedata.png
./images/._07_evaluate.png
./images/._01_datasplit.png
./images/._image_classification.png
./images/._vdl1.jpg
./images/._vdl3.jpg
./._requirements.txt
./._Makefile
./._apis
./appendix/._metrics.md
./appendix/._how_to_offline_run.md
./appendix/._index.rst
./appendix/._gpu_configure.md
./appendix/._anaconda_install.md
./._install.md
./._paddlex_gui.md
./._index.rst
./._quick_start.md
./tutorials/._README.md
./tutorials/deploy/._deploy.md
./tutorials/deploy/._images
./tutorials/deploy/._deploy_cpp_win_vs2019.md
./tutorials/deploy/._deploy_cpp_linux.md
./tutorials/deploy/images/._vs2019_step4.png
./tutorials/deploy/images/._vs2019_step3.png
./tutorials/deploy/images/._vs2019_step6.png
./tutorials/deploy/images/._vs2019_step1.png
./tutorials/deploy/images/._vs2019_step5.png
./tutorials/deploy/images/._vs2019_step2.png
./tutorials/._compress
./tutorials/._datasets.md
./tutorials/._train
./tutorials/train/._detection.md
./tutorials/train/._visualdl.md
./tutorials/train/._instance_segmentation.md
./tutorials/train/._classification.md
./tutorials/train/._index.rst
./tutorials/train/._segmentation.md
./tutorials/compress/._slim
./tutorials/compress/._detection.md
./tutorials/compress/._classification.md
./tutorials/compress/._index.rst
./tutorials/compress/slim/._prune.md
./tutorials/compress/slim/._quant.md
./tutorials/compress/slim/._index.rst
./tutorials/compress/._segmentation.md
./tutorials/._index.rst
./tutorials/._deploy
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册