base.py 25.2 KB
Newer Older
F
FlyingQianMM 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
F
FlyingQianMM 已提交
2
#
F
FlyingQianMM 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
F
FlyingQianMM 已提交
6
#
F
FlyingQianMM 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
F
FlyingQianMM 已提交
8
#
F
FlyingQianMM 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
J
jiangjiajun 已提交
14 15 16 17

from __future__ import absolute_import
import paddle.fluid as fluid
import os
S
sunyanfang01 已提交
18
import sys
J
jiangjiajun 已提交
19 20 21 22 23 24 25 26 27
import numpy as np
import time
import math
import yaml
import copy
import json
import functools
import paddlex.utils.logging as logging
from paddlex.utils import seconds_to_hms
F
FlyingQianMM 已提交
28
from paddlex.utils.utils import EarlyStop
J
jiangjiajun 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
import paddlex
from collections import OrderedDict
from os import path as osp
from paddle.fluid.framework import Program
from .utils.pretrain_weights import get_pretrain_weights


def dict2str(dict_input):
    out = ''
    for k, v in dict_input.items():
        try:
            v = round(float(v), 6)
        except:
            pass
        out = out + '{}={}, '.format(k, v)
    return out.strip(', ')


class BaseAPI:
    def __init__(self, model_type):
        self.model_type = model_type
        # 现有的CV模型都有这个属性,而这个属且也需要在eval时用到
        self.num_classes = None
        self.labels = None
        self.version = paddlex.__version__
        if paddlex.env_info['place'] == 'cpu':
            self.places = fluid.cpu_places()
        else:
            self.places = fluid.cuda_places()
        self.exe = fluid.Executor(self.places[0])
        self.train_prog = None
        self.test_prog = None
        self.parallel_train_prog = None
        self.train_inputs = None
        self.test_inputs = None
        self.train_outputs = None
        self.test_outputs = None
        self.train_data_loader = None
        self.eval_metrics = None
        # 若模型是从inference model加载进来的,无法调用训练接口进行训练
        self.trainable = True
        # 是否使用多卡间同步BatchNorm均值和方差
        self.sync_bn = False
        # 当前模型状态
        self.status = 'Normal'
74 75
        # 已完成迭代轮数,为恢复训练时的起始轮数
        self.completed_epochs = 0
J
jiangjiajun 已提交
76 77 78 79 80 81

    def _get_single_card_bs(self, batch_size):
        if batch_size % len(self.places) == 0:
            return int(batch_size // len(self.places))
        else:
            raise Exception("Please support correct batch_size, \
82 83 84
                            which can be divided by available cards({}) in {}"
                            .format(paddlex.env_info['num'], paddlex.env_info[
                                'place']))
J
jiangjiajun 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141

    def build_program(self):
        # 构建训练网络
        self.train_inputs, self.train_outputs = self.build_net(mode='train')
        self.train_prog = fluid.default_main_program()
        startup_prog = fluid.default_startup_program()

        # 构建预测网络
        self.test_prog = fluid.Program()
        with fluid.program_guard(self.test_prog, startup_prog):
            with fluid.unique_name.guard():
                self.test_inputs, self.test_outputs = self.build_net(
                    mode='test')
        self.test_prog = self.test_prog.clone(for_test=True)

    def arrange_transforms(self, transforms, mode='train'):
        # 给transforms添加arrange操作
        if self.model_type == 'classifier':
            arrange_transform = paddlex.cls.transforms.ArrangeClassifier
        elif self.model_type == 'segmenter':
            arrange_transform = paddlex.seg.transforms.ArrangeSegmenter
        elif self.model_type == 'detector':
            arrange_name = 'Arrange{}'.format(self.__class__.__name__)
            arrange_transform = getattr(paddlex.det.transforms, arrange_name)
        else:
            raise Exception("Unrecognized model type: {}".format(
                self.model_type))
        if type(transforms.transforms[-1]).__name__.startswith('Arrange'):
            transforms.transforms[-1] = arrange_transform(mode=mode)
        else:
            transforms.transforms.append(arrange_transform(mode=mode))

    def build_train_data_loader(self, dataset, batch_size):
        # 初始化data_loader
        if self.train_data_loader is None:
            self.train_data_loader = fluid.io.DataLoader.from_generator(
                feed_list=list(self.train_inputs.values()),
                capacity=64,
                use_double_buffer=True,
                iterable=True)
        batch_size_each_gpu = self._get_single_card_bs(batch_size)
        generator = dataset.generator(
            batch_size=batch_size_each_gpu, drop_last=True)
        self.train_data_loader.set_sample_list_generator(
            dataset.generator(batch_size=batch_size_each_gpu),
            places=self.places)

    def export_quant_model(self,
                           dataset,
                           save_dir,
                           batch_size=1,
                           batch_num=10,
                           cache_dir="./temp"):
        self.arrange_transforms(transforms=dataset.transforms, mode='quant')
        dataset.num_samples = batch_size * batch_num
        try:
            from .slim.post_quantization import PaddleXPostTrainingQuantization
S
sunyanfang01 已提交
142
            PaddleXPostTrainingQuantization._collect_target_varnames
J
jiangjiajun 已提交
143 144
        except:
            raise Exception(
S
sunyanfang01 已提交
145
                "Model Quantization is not available, try to upgrade your paddlepaddle>=1.8.0"
J
jiangjiajun 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
            )
        is_use_cache_file = True
        if cache_dir is None:
            is_use_cache_file = False
        post_training_quantization = PaddleXPostTrainingQuantization(
            executor=self.exe,
            dataset=dataset,
            program=self.test_prog,
            inputs=self.test_inputs,
            outputs=self.test_outputs,
            batch_size=batch_size,
            batch_nums=batch_num,
            scope=None,
            algo='KL',
            quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"],
            is_full_quantize=False,
            is_use_cache_file=is_use_cache_file,
            cache_dir=cache_dir)
        post_training_quantization.quantize()
        post_training_quantization.save_quantized_model(save_dir)
        model_info = self.get_model_info()
        model_info['status'] = 'Quant'

        # 保存模型输出的变量描述
        model_info['_ModelInputsOutputs'] = dict()
        model_info['_ModelInputsOutputs']['test_inputs'] = [
            [k, v.name] for k, v in self.test_inputs.items()
        ]
        model_info['_ModelInputsOutputs']['test_outputs'] = [
            [k, v.name] for k, v in self.test_outputs.items()
        ]

        with open(
                osp.join(save_dir, 'model.yml'), encoding='utf-8',
                mode='w') as f:
            yaml.dump(model_info, f)

    def net_initialize(self,
                       startup_prog=None,
                       pretrain_weights=None,
                       fuse_bn=False,
                       save_dir='.',
                       sensitivities_file=None,
189 190 191 192 193 194 195 196
                       eval_metric_loss=0.05,
                       resume_checkpoint=None):
        if not resume_checkpoint:
            pretrain_dir = osp.join(save_dir, 'pretrain')
            if not os.path.isdir(pretrain_dir):
                if os.path.exists(pretrain_dir):
                    os.remove(pretrain_dir)
                os.makedirs(pretrain_dir)
F
FlyingQianMM 已提交
197 198
            if pretrain_weights is not None and not os.path.exists(
                    pretrain_weights):
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
                if self.model_type == 'classifier':
                    if pretrain_weights not in ['IMAGENET']:
                        logging.warning(
                            "Pretrain_weights for classifier should be defined as directory path or parameter file or 'IMAGENET' or None, but it is {}, so we force to set it as 'IMAGENET'".
                            format(pretrain_weights))
                        pretrain_weights = 'IMAGENET'
                elif self.model_type == 'detector':
                    if pretrain_weights not in ['IMAGENET', 'COCO']:
                        logging.warning(
                            "Pretrain_weights for detector should be defined as directory path or parameter file or 'IMAGENET' or 'COCO' or None, but it is {}, so we force to set it as 'IMAGENET'".
                            format(pretrain_weights))
                        pretrain_weights = 'IMAGENET'
                elif self.model_type == 'segmenter':
                    if pretrain_weights not in [
                            'IMAGENET', 'COCO', 'CITYSCAPES'
                    ]:
                        logging.warning(
                            "Pretrain_weights for segmenter should be defined as directory path or parameter file or 'IMAGENET' or 'COCO' or 'CITYSCAPES', but it is {}, so we force to set it as 'IMAGENET'".
                            format(pretrain_weights))
                        pretrain_weights = 'IMAGENET'
219 220 221 222
            if hasattr(self, 'backbone'):
                backbone = self.backbone
            else:
                backbone = self.__class__.__name__
F
FlyingQianMM 已提交
223 224
                if backbone == "HRNet":
                    backbone = backbone + "_W{}".format(self.width)
225
            class_name = self.__class__.__name__
226
            pretrain_weights = get_pretrain_weights(
227
                pretrain_weights, class_name, backbone, pretrain_dir)
J
jiangjiajun 已提交
228 229 230
        if startup_prog is None:
            startup_prog = fluid.default_startup_program()
        self.exe.run(startup_prog)
231 232 233 234 235 236 237
        if resume_checkpoint:
            logging.info(
                "Resume checkpoint from {}.".format(resume_checkpoint),
                use_color=True)
            paddlex.utils.utils.load_pretrain_weights(
                self.exe, self.train_prog, resume_checkpoint, resume=True)
            if not osp.exists(osp.join(resume_checkpoint, "model.yml")):
238 239
                raise Exception("There's not model.yml in {}".format(
                    resume_checkpoint))
240 241 242 243
            with open(osp.join(resume_checkpoint, "model.yml")) as f:
                info = yaml.load(f.read(), Loader=yaml.Loader)
                self.completed_epochs = info['completed_epochs']
        elif pretrain_weights is not None:
J
jiangjiajun 已提交
244
            logging.info(
C
Channingss 已提交
245 246
                "Load pretrain weights from {}.".format(pretrain_weights),
                use_color=True)
F
FlyingQianMM 已提交
247 248
            paddlex.utils.utils.load_pretrain_weights(
                self.exe, self.train_prog, pretrain_weights, fuse_bn)
J
jiangjiajun 已提交
249 250
        # 进行裁剪
        if sensitivities_file is not None:
J
jiangjiajun 已提交
251
            import paddleslim
J
jiangjiajun 已提交
252 253 254 255
            from .slim.prune_config import get_sensitivities
            sensitivities_file = get_sensitivities(sensitivities_file, self,
                                                   save_dir)
            from .slim.prune import get_params_ratios, prune_program
J
jiangjiajun 已提交
256 257
            logging.info(
                "Start to prune program with eval_metric_loss = {}".format(
C
Channingss 已提交
258 259
                    eval_metric_loss),
                use_color=True)
J
jiangjiajun 已提交
260
            origin_flops = paddleslim.analysis.flops(self.test_prog)
J
jiangjiajun 已提交
261 262 263
            prune_params_ratios = get_params_ratios(
                sensitivities_file, eval_metric_loss=eval_metric_loss)
            prune_program(self, prune_params_ratios)
J
jiangjiajun 已提交
264 265 266 267
            current_flops = paddleslim.analysis.flops(self.test_prog)
            remaining_ratio = current_flops / origin_flops
            logging.info(
                "Finish prune program, before FLOPs:{}, after prune FLOPs:{}, remaining ratio:{}"
C
Channingss 已提交
268 269
                .format(origin_flops, current_flops, remaining_ratio),
                use_color=True)
J
jiangjiajun 已提交
270 271 272 273 274 275 276 277 278 279 280
            self.status = 'Prune'

    def get_model_info(self):
        info = dict()
        info['version'] = paddlex.__version__
        info['Model'] = self.__class__.__name__
        info['_Attributes'] = {'model_type': self.model_type}
        if 'self' in self.init_params:
            del self.init_params['self']
        if '__class__' in self.init_params:
            del self.init_params['__class__']
S
sunyanfang01 已提交
281 282 283
        if 'model_name' in self.init_params:
            del self.init_params['model_name']

J
jiangjiajun 已提交
284 285 286 287
        info['_init_params'] = self.init_params

        info['_Attributes']['num_classes'] = self.num_classes
        info['_Attributes']['labels'] = self.labels
J
jiangjiajun 已提交
288
        info['_Attributes']['fixed_input_shape'] = self.fixed_input_shape
J
jiangjiajun 已提交
289 290 291 292 293 294 295 296 297 298
        try:
            primary_metric_key = list(self.eval_metrics.keys())[0]
            primary_metric_value = float(self.eval_metrics[primary_metric_key])
            info['_Attributes']['eval_metrics'] = {
                primary_metric_key: primary_metric_value
            }
        except:
            pass

        if hasattr(self, 'test_transforms'):
299 300 301 302 303 304
            if hasattr(self.test_transforms, 'to_rgb'):
                if self.test_transforms.to_rgb:
                    info['TransformsMode'] = 'RGB'
                else:
                    info['TransformsMode'] = 'BGR'

J
jiangjiajun 已提交
305 306 307 308 309 310
            if self.test_transforms is not None:
                info['Transforms'] = list()
                for op in self.test_transforms.transforms:
                    name = op.__class__.__name__
                    attr = op.__dict__
                    info['Transforms'].append({name: attr})
311
        info['completed_epochs'] = self.completed_epochs
J
jiangjiajun 已提交
312 313 314 315 316 317 318
        return info

    def save_model(self, save_dir):
        if not osp.isdir(save_dir):
            if osp.exists(save_dir):
                os.remove(save_dir)
            os.makedirs(save_dir)
J
jiangjiajun 已提交
319 320 321 322
        if self.train_prog is not None:
            fluid.save(self.train_prog, osp.join(save_dir, 'model'))
        else:
            fluid.save(self.test_prog, osp.join(save_dir, 'model'))
J
jiangjiajun 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
        model_info = self.get_model_info()
        model_info['status'] = self.status
        with open(
                osp.join(save_dir, 'model.yml'), encoding='utf-8',
                mode='w') as f:
            yaml.dump(model_info, f)
        # 评估结果保存
        if hasattr(self, 'eval_details'):
            with open(osp.join(save_dir, 'eval_details.json'), 'w') as f:
                json.dump(self.eval_details, f)

        if self.status == 'Prune':
            # 保存裁剪的shape
            shapes = {}
            for block in self.train_prog.blocks:
                for param in block.all_parameters():
                    pd_var = fluid.global_scope().find_var(param.name)
                    pd_param = pd_var.get_tensor()
                    shapes[param.name] = np.array(pd_param).shape
            with open(
                    osp.join(save_dir, 'prune.yml'), encoding='utf-8',
                    mode='w') as f:
                yaml.dump(shapes, f)

        # 模型保存成功的标志
        open(osp.join(save_dir, '.success'), 'w').close()
        logging.info("Model saved in {}.".format(save_dir))

C
Channingss 已提交
351
    def export_inference_model(self, save_dir):
F
FlyingQianMM 已提交
352 353 354
        test_input_names = [
            var.name for var in list(self.test_inputs.values())
        ]
J
jiangjiajun 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
        test_outputs = list(self.test_outputs.values())
        if self.__class__.__name__ == 'MaskRCNN':
            from paddlex.utils.save import save_mask_inference_model
            save_mask_inference_model(
                dirname=save_dir,
                executor=self.exe,
                params_filename='__params__',
                feeded_var_names=test_input_names,
                target_vars=test_outputs,
                main_program=self.test_prog)
        else:
            fluid.io.save_inference_model(
                dirname=save_dir,
                executor=self.exe,
                params_filename='__params__',
                feeded_var_names=test_input_names,
                target_vars=test_outputs,
                main_program=self.test_prog)
        model_info = self.get_model_info()
        model_info['status'] = 'Infer'

        # 保存模型输出的变量描述
        model_info['_ModelInputsOutputs'] = dict()
        model_info['_ModelInputsOutputs']['test_inputs'] = [
            [k, v.name] for k, v in self.test_inputs.items()
        ]
        model_info['_ModelInputsOutputs']['test_outputs'] = [
            [k, v.name] for k, v in self.test_outputs.items()
        ]
        with open(
                osp.join(save_dir, 'model.yml'), encoding='utf-8',
                mode='w') as f:
            yaml.dump(model_info, f)
C
Channingss 已提交
388

J
jiangjiajun 已提交
389 390
        # 模型保存成功的标志
        open(osp.join(save_dir, '.success'), 'w').close()
F
FlyingQianMM 已提交
391 392
        logging.info("Model for inference deploy saved in {}.".format(
            save_dir))
J
jiangjiajun 已提交
393 394 395 396 397 398 399 400 401

    def train_loop(self,
                   num_epochs,
                   train_dataset,
                   train_batch_size,
                   eval_dataset=None,
                   save_interval_epochs=1,
                   log_interval_steps=10,
                   save_dir='output',
F
FlyingQianMM 已提交
402 403 404
                   use_vdl=False,
                   early_stop=False,
                   early_stop_patience=5):
S
sunyanfang01 已提交
405
        if train_dataset.num_samples < train_batch_size:
406 407
            raise Exception(
                'The amount of training datset must be larger than batch size.')
J
jiangjiajun 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
        if not osp.isdir(save_dir):
            if osp.exists(save_dir):
                os.remove(save_dir)
            os.makedirs(save_dir)
        if use_vdl:
            from visualdl import LogWriter
            vdl_logdir = osp.join(save_dir, 'vdl_log')
        # 给transform添加arrange操作
        self.arrange_transforms(
            transforms=train_dataset.transforms, mode='train')
        # 构建train_data_loader
        self.build_train_data_loader(
            dataset=train_dataset, batch_size=train_batch_size)

        if eval_dataset is not None:
            self.eval_transforms = eval_dataset.transforms
            self.test_transforms = copy.deepcopy(eval_dataset.transforms)

        # 获取实时变化的learning rate
        lr = self.optimizer._learning_rate
        if isinstance(lr, fluid.framework.Variable):
            self.train_outputs['lr'] = lr

        # 在多卡上跑训练
        if self.parallel_train_prog is None:
            build_strategy = fluid.compiler.BuildStrategy()
            build_strategy.fuse_all_optimizer_ops = False
            if paddlex.env_info['place'] != 'cpu' and len(self.places) > 1:
                build_strategy.sync_batch_norm = self.sync_bn
            exec_strategy = fluid.ExecutionStrategy()
            exec_strategy.num_iteration_per_drop_scope = 1
            self.parallel_train_prog = fluid.CompiledProgram(
                self.train_prog).with_data_parallel(
                    loss_name=self.train_outputs['loss'].name,
                    build_strategy=build_strategy,
                    exec_strategy=exec_strategy)

445 446
        total_num_steps = math.floor(train_dataset.num_samples /
                                     train_batch_size)
J
jiangjiajun 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459
        num_steps = 0
        time_stat = list()
        time_train_one_epoch = None
        time_eval_one_epoch = None

        total_num_steps_eval = 0
        # 模型总共的评估次数
        total_eval_times = math.ceil(num_epochs / save_interval_epochs)
        # 检测目前仅支持单卡评估,训练数据batch大小与显卡数量之商为验证数据batch大小。
        eval_batch_size = train_batch_size
        if self.model_type == 'detector':
            eval_batch_size = self._get_single_card_bs(train_batch_size)
        if eval_dataset is not None:
460 461
            total_num_steps_eval = math.ceil(eval_dataset.num_samples /
                                             eval_batch_size)
J
jiangjiajun 已提交
462 463 464

        if use_vdl:
            # VisualDL component
S
sunyanfang01 已提交
465
            log_writer = LogWriter(vdl_logdir)
J
jiangjiajun 已提交
466

F
FlyingQianMM 已提交
467 468 469
        thresh = 0.0001
        if early_stop:
            earlystop = EarlyStop(early_stop_patience, thresh)
J
jiangjiajun 已提交
470 471
        best_accuracy_key = ""
        best_accuracy = -1.0
J
jiangjiajun 已提交
472
        best_model_epoch = -1
F
FlyingQianMM 已提交
473
        start_epoch = self.completed_epochs
474
        for i in range(start_epoch, num_epochs):
J
jiangjiajun 已提交
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
            records = list()
            step_start_time = time.time()
            epoch_start_time = time.time()
            for step, data in enumerate(self.train_data_loader()):
                outputs = self.exe.run(
                    self.parallel_train_prog,
                    feed=data,
                    fetch_list=list(self.train_outputs.values()))
                outputs_avg = np.mean(np.array(outputs), axis=1)
                records.append(outputs_avg)

                # 训练完成剩余时间预估
                current_time = time.time()
                step_cost_time = current_time - step_start_time
                step_start_time = current_time
                if len(time_stat) < 20:
                    time_stat.append(step_cost_time)
                else:
                    time_stat[num_steps % 20] = step_cost_time

                # 每间隔log_interval_steps,输出loss信息
                num_steps += 1
                if num_steps % log_interval_steps == 0:
                    step_metrics = OrderedDict(
                        zip(list(self.train_outputs.keys()), outputs_avg))

                    if use_vdl:
                        for k, v in step_metrics.items():
503 504 505
                            log_writer.add_scalar(
                                'Metrics/Training(Step): {}'.format(k), v,
                                num_steps)
J
jiangjiajun 已提交
506 507 508 509 510 511 512

                    # 估算剩余时间
                    avg_step_time = np.mean(time_stat)
                    if time_train_one_epoch is not None:
                        eta = (num_epochs - i - 1) * time_train_one_epoch + (
                            total_num_steps - step - 1) * avg_step_time
                    else:
513 514
                        eta = ((num_epochs - i) * total_num_steps - step - 1
                               ) * avg_step_time
J
jiangjiajun 已提交
515
                    if time_eval_one_epoch is not None:
F
FlyingQianMM 已提交
516 517 518
                        eval_eta = (
                            total_eval_times - i // save_interval_epochs
                        ) * time_eval_one_epoch
J
jiangjiajun 已提交
519
                    else:
F
FlyingQianMM 已提交
520 521 522
                        eval_eta = (
                            total_eval_times - i // save_interval_epochs
                        ) * total_num_steps_eval * avg_step_time
J
jiangjiajun 已提交
523 524 525 526 527
                    eta_str = seconds_to_hms(eta + eval_eta)

                    logging.info(
                        "[TRAIN] Epoch={}/{}, Step={}/{}, {}, time_each_step={}s, eta={}"
                        .format(i + 1, num_epochs, step + 1, total_num_steps,
528 529
                                dict2str(step_metrics),
                                round(avg_step_time, 2), eta_str))
J
jiangjiajun 已提交
530
            train_metrics = OrderedDict(
531 532
                zip(list(self.train_outputs.keys()), np.mean(
                    records, axis=0)))
J
jiangjiajun 已提交
533 534 535 536 537 538
            logging.info('[TRAIN] Epoch {} finished, {} .'.format(
                i + 1, dict2str(train_metrics)))
            time_train_one_epoch = time.time() - epoch_start_time
            epoch_start_time = time.time()

            # 每间隔save_interval_epochs, 在验证集上评估和对模型进行保存
C
chenguowei01 已提交
539
            self.completed_epochs += 1
J
jiangjiajun 已提交
540 541 542 543 544
            eval_epoch_start_time = time.time()
            if (i + 1) % save_interval_epochs == 0 or i == num_epochs - 1:
                current_save_dir = osp.join(save_dir, "epoch_{}".format(i + 1))
                if not osp.isdir(current_save_dir):
                    os.makedirs(current_save_dir)
J
jiangjiajun 已提交
545
                if eval_dataset is not None and eval_dataset.num_samples > 0:
J
jiangjiajun 已提交
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
                    self.eval_metrics, self.eval_details = self.evaluate(
                        eval_dataset=eval_dataset,
                        batch_size=eval_batch_size,
                        epoch_id=i + 1,
                        return_details=True)
                    logging.info('[EVAL] Finished, Epoch={}, {} .'.format(
                        i + 1, dict2str(self.eval_metrics)))
                    # 保存最优模型
                    best_accuracy_key = list(self.eval_metrics.keys())[0]
                    current_accuracy = self.eval_metrics[best_accuracy_key]
                    if current_accuracy > best_accuracy:
                        best_accuracy = current_accuracy
                        best_model_epoch = i + 1
                        best_model_dir = osp.join(save_dir, "best_model")
                        self.save_model(save_dir=best_model_dir)
                    if use_vdl:
                        for k, v in self.eval_metrics.items():
                            if isinstance(v, list):
                                continue
                            if isinstance(v, np.ndarray):
                                if v.size > 1:
                                    continue
568 569
                            log_writer.add_scalar(
                                "Metrics/Eval(Epoch): {}".format(k), v, i + 1)
J
jiangjiajun 已提交
570 571 572
                self.save_model(save_dir=current_save_dir)
                time_eval_one_epoch = time.time() - eval_epoch_start_time
                eval_epoch_start_time = time.time()
J
jiangjiajun 已提交
573 574 575 576 577
                if best_model_epoch > 0:
                    logging.info(
                        'Current evaluated best model in eval_dataset is epoch_{}, {}={}'
                        .format(best_model_epoch, best_accuracy_key,
                                best_accuracy))
F
FlyingQianMM 已提交
578 579
                if eval_dataset is not None and early_stop:
                    if earlystop(current_accuracy):
580
                        break