visualize.py 14.8 KB
Newer Older
F
FlyingQianMM 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
J
jiangjiajun 已提交
2
#
F
FlyingQianMM 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
J
jiangjiajun 已提交
6
#
F
FlyingQianMM 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
J
jiangjiajun 已提交
8
#
F
FlyingQianMM 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
J
jiangjiajun 已提交
14

F
FlyingQianMM 已提交
15
# -*- coding: utf-8 -*
J
jiangjiajun 已提交
16 17
import os
import cv2
F
FlyingQianMM 已提交
18
import colorsys
J
jiangjiajun 已提交
19
import numpy as np
20
import time
F
FlyingQianMM 已提交
21
import paddlex.utils.logging as logging
F
FlyingQianMM 已提交
22
from .detection_eval import fixed_linspace, backup_linspace, loadRes
J
jiangjiajun 已提交
23 24


F
FlyingQianMM 已提交
25
def visualize_detection(image, result, threshold=0.5, save_dir='./'):
J
jiangjiajun 已提交
26 27 28 29
    """
        Visualize bbox and mask results
    """

30
    if isinstance(image, np.ndarray):
J
jiangjiajun 已提交
31
        image_name = str(int(time.time() * 1000)) + '.jpg'
32 33
    else:
        image_name = os.path.split(image)[-1]
F
FlyingQianMM 已提交
34
        image = cv2.imread(image)
35

36
    image = draw_bbox_mask(image, result, threshold=threshold)
J
jiangjiajun 已提交
37 38 39 40
    if save_dir is not None:
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        out_path = os.path.join(save_dir, 'visualize_{}'.format(image_name))
F
FlyingQianMM 已提交
41
        cv2.imwrite(out_path, image)
F
FlyingQianMM 已提交
42
        logging.info('The visualized result is saved as {}'.format(out_path))
J
jiangjiajun 已提交
43 44 45 46
    else:
        return image


F
FlyingQianMM 已提交
47
def visualize_segmentation(image, result, weight=0.6, save_dir='./'):
J
jiangjiajun 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
    """
    Convert segment result to color image, and save added image.
    Args:
        image: the path of origin image
        result: the predict result of image
        weight: the image weight of visual image, and the result weight is (1 - weight)
        save_dir: the directory for saving visual image
    """
    label_map = result['label_map']
    color_map = get_color_map_list(256)
    color_map = np.array(color_map).astype("uint8")
    # Use OpenCV LUT for color mapping
    c1 = cv2.LUT(label_map, color_map[:, 0])
    c2 = cv2.LUT(label_map, color_map[:, 1])
    c3 = cv2.LUT(label_map, color_map[:, 2])
    pseudo_img = np.dstack((c1, c2, c3))

65 66
    if isinstance(image, np.ndarray):
        im = image
J
jiangjiajun 已提交
67
        image_name = str(int(time.time() * 1000)) + '.jpg'
68 69
    else:
        image_name = os.path.split(image)[-1]
F
FlyingQianMM 已提交
70
        im = cv2.imread(image)
71

J
jiangjiajun 已提交
72 73 74 75 76 77 78
    vis_result = cv2.addWeighted(im, weight, pseudo_img, 1 - weight, 0)

    if save_dir is not None:
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        out_path = os.path.join(save_dir, 'visualize_{}'.format(image_name))
        cv2.imwrite(out_path, vis_result)
F
FlyingQianMM 已提交
79
        logging.info('The visualized result is saved as {}'.format(out_path))
J
jiangjiajun 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    else:
        return vis_result


def get_color_map_list(num_classes):
    """ Returns the color map for visualizing the segmentation mask,
        which can support arbitrary number of classes.
    Args:
        num_classes: Number of classes
    Returns:
        The color map
    """
    color_map = num_classes * [0, 0, 0]
    for i in range(0, num_classes):
        j = 0
        lab = i
        while lab:
            color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
            color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
            color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
            j += 1
            lab >>= 3
    color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
    return color_map


# expand an array of boxes by a given scale.
def expand_boxes(boxes, scale):
    """
        """
    w_half = (boxes[:, 2] - boxes[:, 0]) * .5
    h_half = (boxes[:, 3] - boxes[:, 1]) * .5
    x_c = (boxes[:, 2] + boxes[:, 0]) * .5
    y_c = (boxes[:, 3] + boxes[:, 1]) * .5

    w_half *= scale
    h_half *= scale

    boxes_exp = np.zeros(boxes.shape)
    boxes_exp[:, 0] = x_c - w_half
    boxes_exp[:, 2] = x_c + w_half
    boxes_exp[:, 1] = y_c - h_half
    boxes_exp[:, 3] = y_c + h_half

    return boxes_exp


def clip_bbox(bbox):
    xmin = max(min(bbox[0], 1.), 0.)
    ymin = max(min(bbox[1], 1.), 0.)
    xmax = max(min(bbox[2], 1.), 0.)
    ymax = max(min(bbox[3], 1.), 0.)
    return xmin, ymin, xmax, ymax


F
FlyingQianMM 已提交
135
def draw_bbox_mask(image, results, threshold=0.5):
136 137 138 139 140 141 142
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib as mpl
    import matplotlib.figure as mplfigure
    import matplotlib.colors as mplc
    from matplotlib.backends.backend_agg import FigureCanvasAgg

F
FlyingQianMM 已提交
143
    # refer to  https://github.com/facebookresearch/detectron2/blob/master/detectron2/utils/visualizer.py
F
FlyingQianMM 已提交
144 145 146 147
    def _change_color_brightness(color, brightness_factor):
        assert brightness_factor >= -1.0 and brightness_factor <= 1.0
        color = mplc.to_rgb(color)
        polygon_color = colorsys.rgb_to_hls(*mplc.to_rgb(color))
J
jiangjiajun 已提交
148 149
        modified_lightness = polygon_color[1] + (brightness_factor *
                                                 polygon_color[1])
F
FlyingQianMM 已提交
150 151 152 153 154 155
        modified_lightness = 0.0 if modified_lightness < 0.0 else modified_lightness
        modified_lightness = 1.0 if modified_lightness > 1.0 else modified_lightness
        modified_color = colorsys.hls_to_rgb(
            polygon_color[0], modified_lightness, polygon_color[2])
        return modified_color

F
FlyingQianMM 已提交
156 157 158 159 160 161 162 163
    _SMALL_OBJECT_AREA_THRESH = 1000
    # setup figure
    width, height = image.shape[1], image.shape[0]
    scale = 1
    fig = mplfigure.Figure(frameon=False)
    dpi = fig.get_dpi()
    fig.set_size_inches(
        (width * scale + 1e-2) / dpi,
J
jiangjiajun 已提交
164
        (height * scale + 1e-2) / dpi, )
F
FlyingQianMM 已提交
165 166 167 168 169 170 171 172
    canvas = FigureCanvasAgg(fig)
    ax = fig.add_axes([0.0, 0.0, 1.0, 1.0])
    ax.axis("off")
    ax.set_xlim(0.0, width)
    ax.set_ylim(height)
    default_font_size = max(np.sqrt(height * width) // 90, 10 // scale)
    linewidth = max(default_font_size / 4, 1)

J
jiangjiajun 已提交
173 174 175 176
    labels = list()
    for dt in np.array(results):
        if dt['category'] not in labels:
            labels.append(dt['category'])
F
FlyingQianMM 已提交
177
    color_map = get_color_map_list(256)
J
jiangjiajun 已提交
178

F
FlyingQianMM 已提交
179 180
    keep_results = []
    areas = []
J
jiangjiajun 已提交
181 182 183 184
    for dt in np.array(results):
        cname, bbox, score = dt['category'], dt['bbox'], dt['score']
        if score < threshold:
            continue
F
FlyingQianMM 已提交
185 186 187 188 189 190
        keep_results.append(dt)
        areas.append(bbox[2] * bbox[3])
    areas = np.asarray(areas)
    sorted_idxs = np.argsort(-areas).tolist()
    keep_results = [keep_results[k]
                    for k in sorted_idxs] if len(keep_results) > 0 else []
J
jiangjiajun 已提交
191

F
FlyingQianMM 已提交
192 193
    for dt in np.array(keep_results):
        cname, bbox, score = dt['category'], dt['bbox'], dt['score']
J
jiangjiajun 已提交
194 195 196 197
        xmin, ymin, w, h = bbox
        xmax = xmin + w
        ymax = ymin + h

F
FlyingQianMM 已提交
198 199
        color = tuple(color_map[labels.index(cname) + 2])
        color = [c / 255. for c in color]
J
jiangjiajun 已提交
200
        # draw bbox
F
FlyingQianMM 已提交
201 202 203 204 205 206 207 208
        ax.add_patch(
            mpl.patches.Rectangle(
                (xmin, ymin),
                w,
                h,
                fill=False,
                edgecolor=color,
                linewidth=linewidth * scale,
F
FlyingQianMM 已提交
209
                alpha=0.8,
J
jiangjiajun 已提交
210
                linestyle="-", ))
J
jiangjiajun 已提交
211 212 213 214

        # draw mask
        if 'mask' in dt:
            mask = dt['mask']
F
FlyingQianMM 已提交
215 216 217 218
            mask = np.ascontiguousarray(mask)
            res = cv2.findContours(
                mask.astype("uint8"), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE)
            hierarchy = res[-1]
F
FlyingQianMM 已提交
219
            alpha = 0.5
F
FlyingQianMM 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232
            if hierarchy is not None:
                has_holes = (hierarchy.reshape(-1, 4)[:, 3] >= 0).sum() > 0
                res = res[-2]
                res = [x.flatten() for x in res]
                res = [x for x in res if len(x) >= 6]
                for segment in res:
                    segment = segment.reshape(-1, 2)
                    edge_color = mplc.to_rgb(color) + (1, )
                    polygon = mpl.patches.Polygon(
                        segment,
                        fill=True,
                        facecolor=mplc.to_rgb(color) + (alpha, ),
                        edgecolor=edge_color,
J
jiangjiajun 已提交
233
                        linewidth=max(default_font_size // 15 * scale, 1), )
F
FlyingQianMM 已提交
234 235 236 237 238 239
                    ax.add_patch(polygon)

        # draw label
        text_pos = (xmin, ymin)
        horiz_align = "left"
        instance_area = w * h
J
jiangjiajun 已提交
240 241
        if (instance_area < _SMALL_OBJECT_AREA_THRESH * scale or
                h < 40 * scale):
F
FlyingQianMM 已提交
242 243 244 245 246
            if ymin >= height - 5:
                text_pos = (xmin, ymin)
            else:
                text_pos = (xmin, ymax)
        height_ratio = h / np.sqrt(height * width)
J
jiangjiajun 已提交
247 248
        font_size = (np.clip((height_ratio - 0.02) / 0.08 + 1, 1.2,
                             2) * 0.5 * default_font_size)
F
FlyingQianMM 已提交
249 250 251
        text = "{} {:.2f}".format(cname, score)
        color = np.maximum(list(mplc.to_rgb(color)), 0.2)
        color[np.argmax(color)] = max(0.8, np.max(color))
F
FlyingQianMM 已提交
252
        color = _change_color_brightness(color, brightness_factor=0.7)
F
FlyingQianMM 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
        ax.text(
            text_pos[0],
            text_pos[1],
            text,
            size=font_size * scale,
            family="sans-serif",
            bbox={
                "facecolor": "black",
                "alpha": 0.8,
                "pad": 0.7,
                "edgecolor": "none"
            },
            verticalalignment="top",
            horizontalalignment=horiz_align,
            color=color,
            zorder=10,
J
jiangjiajun 已提交
269
            rotation=0, )
F
FlyingQianMM 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287

    s, (width, height) = canvas.print_to_buffer()
    buffer = np.frombuffer(s, dtype="uint8")

    img_rgba = buffer.reshape(height, width, 4)
    rgb, alpha = np.split(img_rgba, [3], axis=2)

    try:
        import numexpr as ne
        visualized_image = ne.evaluate(
            "image * (1 - alpha / 255.0) + rgb * (alpha / 255.0)")
    except ImportError:
        alpha = alpha.astype("float32") / 255.0
        visualized_image = image * (1 - alpha) + rgb * alpha

    visualized_image = visualized_image.astype("uint8")

    return visualized_image
F
FlyingQianMM 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311


def draw_pr_curve(eval_details_file=None,
                  gt=None,
                  pred_bbox=None,
                  pred_mask=None,
                  iou_thresh=0.5,
                  save_dir='./'):
    if eval_details_file is not None:
        import json
        with open(eval_details_file, 'r') as f:
            eval_details = json.load(f)
            pred_bbox = eval_details['bbox']
            if 'mask' in eval_details:
                pred_mask = eval_details['mask']
            gt = eval_details['gt']
    if gt is None or pred_bbox is None:
        raise Exception(
            "gt/pred_bbox/pred_mask is None now, please set right eval_details_file or gt/pred_bbox/pred_mask."
        )
    if pred_bbox is not None and len(pred_bbox) == 0:
        raise Exception("There is no predicted bbox.")
    if pred_mask is not None and len(pred_mask) == 0:
        raise Exception("There is no predicted mask.")
312 313 314
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt
F
FlyingQianMM 已提交
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
    from pycocotools.coco import COCO
    from pycocotools.cocoeval import COCOeval
    coco = COCO()
    coco.dataset = gt
    coco.createIndex()

    def _summarize(coco_gt, ap=1, iouThr=None, areaRng='all', maxDets=100):
        p = coco_gt.params
        aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng]
        mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets]
        if ap == 1:
            # dimension of precision: [TxRxKxAxM]
            s = coco_gt.eval['precision']
            # IoU
            if iouThr is not None:
                t = np.where(iouThr == p.iouThrs)[0]
                s = s[t]
            s = s[:, :, :, aind, mind]
        else:
            # dimension of recall: [TxKxAxM]
            s = coco_gt.eval['recall']
            if iouThr is not None:
                t = np.where(iouThr == p.iouThrs)[0]
                s = s[t]
            s = s[:, :, aind, mind]
        if len(s[s > -1]) == 0:
            mean_s = -1
        else:
            mean_s = np.mean(s[s > -1])
        return mean_s

    def cal_pr(coco_gt, coco_dt, iou_thresh, save_dir, style='bbox'):
        from pycocotools.cocoeval import COCOeval
        coco_dt = loadRes(coco_gt, coco_dt)
        np.linspace = fixed_linspace
        coco_eval = COCOeval(coco_gt, coco_dt, style)
        coco_eval.params.iouThrs = np.linspace(
            iou_thresh, iou_thresh, 1, endpoint=True)
        np.linspace = backup_linspace
        coco_eval.evaluate()
        coco_eval.accumulate()
        stats = _summarize(coco_eval, iouThr=iou_thresh)
        catIds = coco_gt.getCatIds()
        if len(catIds) != coco_eval.eval['precision'].shape[2]:
            raise Exception(
                "The category number must be same as the third dimension of precisions."
            )
        x = np.arange(0.0, 1.01, 0.01)
        color_map = get_color_map_list(256)[1:256]

        plt.subplot(1, 2, 1)
        plt.title(style + " precision-recall IoU={}".format(iou_thresh))
        plt.xlabel("recall")
        plt.ylabel("precision")
        plt.xlim(0, 1.01)
        plt.ylim(0, 1.01)
        plt.grid(linestyle='--', linewidth=1)
        plt.plot([0, 1], [0, 1], 'r--', linewidth=1)
        my_x_ticks = np.arange(0, 1.01, 0.1)
        my_y_ticks = np.arange(0, 1.01, 0.1)
        plt.xticks(my_x_ticks, fontsize=5)
        plt.yticks(my_y_ticks, fontsize=5)
        for idx, catId in enumerate(catIds):
            pr_array = coco_eval.eval['precision'][0, :, idx, 0, 2]
            precision = pr_array[pr_array > -1]
            ap = np.mean(precision) if precision.size else float('nan')
            nm = coco_gt.loadCats(catId)[0]['name'] + ' AP={:0.2f}'.format(
                float(ap * 100))
            color = tuple(color_map[idx])
            color = [float(c) / 255 for c in color]
            color.append(0.75)
            plt.plot(x, pr_array, color=color, label=nm, linewidth=1)
        plt.legend(loc="lower left", fontsize=5)

        plt.subplot(1, 2, 2)
        plt.title(style + " score-recall IoU={}".format(iou_thresh))
        plt.xlabel('recall')
        plt.ylabel('score')
        plt.xlim(0, 1.01)
        plt.ylim(0, 1.01)
        plt.grid(linestyle='--', linewidth=1)
        plt.xticks(my_x_ticks, fontsize=5)
        plt.yticks(my_y_ticks, fontsize=5)
        for idx, catId in enumerate(catIds):
            nm = coco_gt.loadCats(catId)[0]['name']
            sr_array = coco_eval.eval['scores'][0, :, idx, 0, 2]
            color = tuple(color_map[idx])
            color = [float(c) / 255 for c in color]
            color.append(0.75)
            plt.plot(x, sr_array, color=color, label=nm, linewidth=1)
405
        plt.legend(loc="lower left", fontsize=5)
F
FlyingQianMM 已提交
406
        plt.savefig(
J
jiangjiajun 已提交
407 408
            os.path.join(save_dir,
                         "./{}_pr_curve(iou-{}).png".format(style, iou_thresh)),
F
FlyingQianMM 已提交
409 410 411
            dpi=800)
        plt.close()

F
FlyingQianMM 已提交
412 413
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
F
FlyingQianMM 已提交
414 415 416
    cal_pr(coco, pred_bbox, iou_thresh, save_dir, style='bbox')
    if pred_mask is not None:
        cal_pr(coco, pred_mask, iou_thresh, save_dir, style='segm')