__init__.py 4.3 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .resnet import ResNet
from .darknet import DarkNet
from .detection import FasterRCNN
from .mobilenet_v1 import MobileNetV1
from .mobilenet_v2 import MobileNetV2
from .mobilenet_v3 import MobileNetV3
from .segmentation import UNet
from .segmentation import DeepLabv3p
from .xception import Xception
from .densenet import DenseNet
from .shufflenet_v2 import ShuffleNetV2
26
from .hrnet import HRNet
J
jiangjiajun 已提交
27
from .alexnet import AlexNet
J
jiangjiajun 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54


def resnet18(input, num_classes=1000):
    model = ResNet(layers=18, num_classes=num_classes)
    return model(input)


def resnet34(input, num_classes=1000):
    model = ResNet(layers=34, num_classes=num_classes)
    return model(input)


def resnet50(input, num_classes=1000):
    model = ResNet(layers=50, num_classes=num_classes)
    return model(input)


def resnet101(input, num_classes=1000):
    model = ResNet(layers=101, num_classes=num_classes)
    return model(input)


def resnet50_vd(input, num_classes=1000):
    model = ResNet(layers=50, num_classes=num_classes, variant='d')
    return model(input)


S
sunyanfang01 已提交
55
def resnet50_vd_ssld(input, num_classes=1000):
56 57 58 59 60
    model = ResNet(
        layers=50,
        num_classes=num_classes,
        variant='d',
        lr_mult_list=[1.0, 0.1, 0.2, 0.2, 0.3])
S
sunyanfang01 已提交
61 62 63 64
    return model(input)


def resnet101_vd_ssld(input, num_classes=1000):
65 66 67 68 69
    model = ResNet(
        layers=101,
        num_classes=num_classes,
        variant='d',
        lr_mult_list=[1.0, 0.1, 0.2, 0.2, 0.3])
S
sunyanfang01 已提交
70 71 72
    return model(input)


J
jiangjiajun 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
def resnet101_vd(input, num_classes=1000):
    model = ResNet(layers=101, num_classes=num_classes, variant='d')
    return model(input)


def darknet53(input, num_classes=1000):
    model = DarkNet(depth=53, num_classes=num_classes, bn_act='relu')
    return model(input)


def mobilenetv1(input, num_classes=1000):
    model = MobileNetV1(num_classes=num_classes)
    return model(input)


def mobilenetv2(input, num_classes=1000):
    model = MobileNetV2(num_classes=num_classes)
    return model(input)


def mobilenetv3_small(input, num_classes=1000):
    model = MobileNetV3(num_classes=num_classes, model_name='small')
    return model(input)


def mobilenetv3_large(input, num_classes=1000):
    model = MobileNetV3(num_classes=num_classes, model_name='large')
    return model(input)


S
sunyanfang01 已提交
103
def mobilenetv3_small_ssld(input, num_classes=1000):
104 105 106 107
    model = MobileNetV3(
        num_classes=num_classes,
        model_name='small',
        lr_mult_list=[0.25, 0.25, 0.5, 0.5, 0.75])
S
sunyanfang01 已提交
108 109 110 111
    return model(input)


def mobilenetv3_large_ssld(input, num_classes=1000):
112 113 114 115
    model = MobileNetV3(
        num_classes=num_classes,
        model_name='large',
        lr_mult_list=[0.25, 0.25, 0.5, 0.5, 0.75])
S
sunyanfang01 已提交
116 117 118
    return model(input)


J
jiangjiajun 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
def xception65(input, num_classes=1000):
    model = Xception(layers=65, num_classes=num_classes)
    return model(input)


def xception71(input, num_classes=1000):
    model = Xception(layers=71, num_classes=num_classes)
    return model(input)


def xception41(input, num_classes=1000):
    model = Xception(layers=41, num_classes=num_classes)
    return model(input)


def densenet121(input, num_classes=1000):
    model = DenseNet(layers=121, num_classes=num_classes)
    return model(input)


def densenet161(input, num_classes=1000):
    model = DenseNet(layers=161, num_classes=num_classes)
    return model(input)


def densenet201(input, num_classes=1000):
    model = DenseNet(layers=201, num_classes=num_classes)
    return model(input)

148

J
jiangjiajun 已提交
149 150 151
def shufflenetv2(input, num_classes=1000):
    model = ShuffleNetV2(num_classes=num_classes)
    return model(input)
152 153 154 155 156


def hrnet_w18(input, num_classes=1000):
    model = HRNet(width=18, num_classes=num_classes)
    return model(input)
J
jiangjiajun 已提交
157 158 159 160 161


def alexnet(input, num_classes=1000):
    model = AlexNet(num_classes=num_classes)
    return model(input)