__init__.py 4.0 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .resnet import ResNet
from .darknet import DarkNet
from .detection import FasterRCNN
from .mobilenet_v1 import MobileNetV1
from .mobilenet_v2 import MobileNetV2
from .mobilenet_v3 import MobileNetV3
from .segmentation import UNet
from .segmentation import DeepLabv3p
from .xception import Xception
from .densenet import DenseNet
from .shufflenet_v2 import ShuffleNetV2


def resnet18(input, num_classes=1000):
    model = ResNet(layers=18, num_classes=num_classes)
    return model(input)


def resnet34(input, num_classes=1000):
    model = ResNet(layers=34, num_classes=num_classes)
    return model(input)


def resnet50(input, num_classes=1000):
    model = ResNet(layers=50, num_classes=num_classes)
    return model(input)


def resnet101(input, num_classes=1000):
    model = ResNet(layers=101, num_classes=num_classes)
    return model(input)


def resnet50_vd(input, num_classes=1000):
    model = ResNet(layers=50, num_classes=num_classes, variant='d')
    return model(input)


S
sunyanfang01 已提交
53 54 55 56 57 58 59 60 61 62 63 64
def resnet50_vd_ssld(input, num_classes=1000):
    model = ResNet(layers=50, num_classes=num_classes, 
                   variant='d', lr_mult_list=[1.0, 0.1, 0.2, 0.2, 0.3])
    return model(input)


def resnet101_vd_ssld(input, num_classes=1000):
    model = ResNet(layers=101, num_classes=num_classes, 
                   variant='d', lr_mult_list=[1.0, 0.1, 0.2, 0.2, 0.3])
    return model(input)


J
jiangjiajun 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
def resnet101_vd(input, num_classes=1000):
    model = ResNet(layers=101, num_classes=num_classes, variant='d')
    return model(input)


def darknet53(input, num_classes=1000):
    model = DarkNet(depth=53, num_classes=num_classes, bn_act='relu')
    return model(input)


def mobilenetv1(input, num_classes=1000):
    model = MobileNetV1(num_classes=num_classes)
    return model(input)


def mobilenetv2(input, num_classes=1000):
    model = MobileNetV2(num_classes=num_classes)
    return model(input)


def mobilenetv3_small(input, num_classes=1000):
    model = MobileNetV3(num_classes=num_classes, model_name='small')
    return model(input)


def mobilenetv3_large(input, num_classes=1000):
    model = MobileNetV3(num_classes=num_classes, model_name='large')
    return model(input)


S
sunyanfang01 已提交
95 96 97 98 99 100 101 102 103 104 105 106
def mobilenetv3_small_ssld(input, num_classes=1000):
    model = MobileNetV3(num_classes=num_classes, model_name='small',
                        lr_mult_list=[0.25, 0.25, 0.5, 0.5, 0.75])
    return model(input)


def mobilenetv3_large_ssld(input, num_classes=1000):
    model = MobileNetV3(num_classes=num_classes, model_name='large',
                        lr_mult_list=[0.25, 0.25, 0.5, 0.5, 0.75])
    return model(input)


J
jiangjiajun 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
def xception65(input, num_classes=1000):
    model = Xception(layers=65, num_classes=num_classes)
    return model(input)


def xception71(input, num_classes=1000):
    model = Xception(layers=71, num_classes=num_classes)
    return model(input)


def xception41(input, num_classes=1000):
    model = Xception(layers=41, num_classes=num_classes)
    return model(input)


def densenet121(input, num_classes=1000):
    model = DenseNet(layers=121, num_classes=num_classes)
    return model(input)


def densenet161(input, num_classes=1000):
    model = DenseNet(layers=161, num_classes=num_classes)
    return model(input)


def densenet201(input, num_classes=1000):
    model = DenseNet(layers=201, num_classes=num_classes)
    return model(input)

def shufflenetv2(input, num_classes=1000):
    model = ShuffleNetV2(num_classes=num_classes)
    return model(input)