video_detector.cpp 4.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <glog/logging.h>
#include <omp.h>

#include <algorithm>
#include <chrono>  // NOLINT
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
#include <utility>

#include "include/paddlex/paddlex.h"
#include "include/paddlex/visualize.h"

#if defined(__arm__) || defined(__aarch64__)
#include <opencv2/videoio/legacy/constants_c.h>
#endif

using namespace std::chrono;  // NOLINT

DEFINE_string(model_dir, "", "Path of inference model");
DEFINE_bool(use_gpu, false, "Infering with GPU or CPU");
DEFINE_bool(use_trt, false, "Infering with TensorRT");
DEFINE_int32(gpu_id, 0, "GPU card id");
DEFINE_bool(use_camera, false, "Infering with Camera");
DEFINE_int32(camera_id, 0, "Camera id");
DEFINE_string(video_path, "", "Path of input video");
DEFINE_bool(show_result, false, "show the result of each frame with a window");
DEFINE_bool(save_result, true, "save the result of each frame to a video");
DEFINE_string(key, "", "key of encryption");
DEFINE_string(save_dir, "output", "Path to save visualized image");
DEFINE_double(threshold,
              0.5,
              "The minimum scores of target boxes which are shown");

int main(int argc, char** argv) {
  // 解析命令行参数
  google::ParseCommandLineFlags(&argc, &argv, true);

  if (FLAGS_model_dir == "") {
    std::cerr << "--model_dir need to be defined" << std::endl;
    return -1;
  }
  if (FLAGS_video_path == "" & FLAGS_use_camera == false) {
    std::cerr << "--video_path or --use_camera need to be defined" << std::endl;
    return -1;
  }
  // 加载模型
  PaddleX::Model model;
  model.Init(FLAGS_model_dir,
             FLAGS_use_gpu,
             FLAGS_use_trt,
             FLAGS_gpu_id,
             FLAGS_key);
  // 打开视频流
  cv::VideoCapture capture;
  if (FLAGS_use_camera) {
    capture.open(FLAGS_camera_id);
    if (!capture.isOpened()) {
      std::cout << "Can not open the camera "
                << FLAGS_camera_id << "."
                << std::endl;
      return -1;
    }
  } else {
    capture.open(FLAGS_video_path);
    if (!capture.isOpened()) {
      std::cout << "Can not open the video "
                << FLAGS_video_path << "."
                << std::endl;
      return -1;
    }
  }

  // 创建VideoWriter
  cv::VideoWriter video_out;
  std::string video_out_path;
  if (FLAGS_save_result) {
    // 获取视频流信息: 分辨率, 帧率
    int video_width = static_cast<int>(capture.get(CV_CAP_PROP_FRAME_WIDTH));
    int video_height = static_cast<int>(capture.get(CV_CAP_PROP_FRAME_HEIGHT));
    int video_fps = static_cast<int>(capture.get(CV_CAP_PROP_FPS));
    int video_fourcc;
    if (FLAGS_use_camera) {
      video_fourcc = 828601953;
    } else {
      video_fourcc = static_cast<int>(capture.get(CV_CAP_PROP_FOURCC));
    }

    if (FLAGS_use_camera) {
      time_t now = time(0);
      video_out_path =
        PaddleX::generate_save_path(FLAGS_save_dir,
                                    std::to_string(now) + ".mp4");
    } else {
      video_out_path =
        PaddleX::generate_save_path(FLAGS_save_dir, FLAGS_video_path);
    }
    video_out.open(video_out_path.c_str(),
                   video_fourcc,
                   video_fps,
                   cv::Size(video_width, video_height),
                   true);
    if (!video_out.isOpened()) {
      std::cout << "Create video writer failed!" << std::endl;
      return -1;
    }
  }

  PaddleX::DetResult result;
  cv::Mat frame;
  int key;
  while (capture.read(frame)) {
    if (FLAGS_show_result || FLAGS_use_camera) {
     key = cv::waitKey(1);
     // 按下ESC退出整个程序,保存视频文件到磁盘
     if (key == 27) {
       break;
     }
    } else if (frame.empty()) {
      break;
    }
    model.predict(frame, &result);
    // 可视化
    cv::Mat vis_img =
        PaddleX::Visualize(frame, result, model.labels, FLAGS_threshold);
    if (FLAGS_show_result || FLAGS_use_camera) {
      cv::imshow("human_seg", vis_img);
    }
    if (FLAGS_save_result) {
      video_out.write(vis_img);
    }
    result.clear();
  }
  capture.release();
  if (FLAGS_save_result) {
    std::cout << "Visualized output saved as " << video_out_path << std::endl;
    video_out.release();
  }
  if (FLAGS_show_result || FLAGS_use_camera) {
    cv::destroyAllWindows();
  }
  return 0;
}