# Semantic Segmentation Example## Annotation```bashlabelme data_annotated --labels labels.txt --nodata```![](.readme/annotation.jpg)## Convert to VOC-format Dataset```bash# It generates:# - data_dataset_voc/JPEGImages# - data_dataset_voc/SegmentationClass# - data_dataset_voc/SegmentationClassVisualization./labelme2voc.py data_annotated data_dataset_voc --labels labels.txt```<imgsrc="data_dataset_voc/JPEGImages/2011_000003.jpg"width="33%"/><imgsrc="data_dataset_voc/SegmentationClassPNG/2011_000003.png"width="33%"/><imgsrc="data_dataset_voc/SegmentationClassVisualization/2011_000003.jpg"width="33%"/>Fig 1. JPEG image (left), PNG label (center), JPEG label visualization (right) Note that the label file contains only very low label values (ex. `0, 4, 14`), and`255` indicates the `__ignore__` label value (`-1` in the npy file). You can see the label PNG file by following.```bashlabelme_draw_label_png data_dataset_voc/SegmentationClassPNG/2011_000003.png```<imgsrc=".readme/draw_label_png.jpg"width="33%"/>