labelme2coco.py 4.5 KB
Newer Older
L
LaraStuStu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
#!/usr/bin/env python

import argparse
import collections
import datetime
import glob
import json
import os
import os.path as osp
import sys

import numpy as np
import PIL.Image

import labelme

try:
    import pycocotools.mask
except ImportError:
    print('Please install pycocotools:\n\n    pip install pycocotools\n')
    sys.exit(1)


def main():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter
    )
    parser.add_argument('input_dir', help='input annotated directory')
    parser.add_argument('output_dir', help='output dataset directory')
    parser.add_argument('--labels', help='labels file', required=True)
    args = parser.parse_args()

    if osp.exists(args.output_dir):
        print('Output directory already exists:', args.output_dir)
        sys.exit(1)
    os.makedirs(args.output_dir)
    os.makedirs(osp.join(args.output_dir, 'JPEGImages'))
    print('Creating dataset:', args.output_dir)

    now = datetime.datetime.now()

    data = dict(
        info=dict(
            description=None,
            url=None,
            version=None,
            year=now.year,
            contributor=None,
            date_created=now.strftime('%Y-%m-%d %H:%M:%S.%f'),
        ),
        licenses=[dict(
            url=None,
            id=0,
            name=None,
        )],
        images=[
            # license, url, file_name, height, width, date_captured, id
        ],
        type='instances',
        annotations=[
            # segmentation, area, iscrowd, image_id, bbox, category_id, id
        ],
        categories=[
            # supercategory, id, name
        ],
    )

    class_name_to_id = {}
    for i, line in enumerate(open(args.labels).readlines()):
        class_id = i - 1  # starts with -1
        class_name = line.strip()
        if class_id == -1:
            assert class_name == '__ignore__'
            continue
        class_name_to_id[class_name] = class_id
        data['categories'].append(dict(
            supercategory=None,
            id=class_id,
            name=class_name,
        ))

    out_ann_file = osp.join(args.output_dir, 'annotations.json')
    label_files = glob.glob(osp.join(args.input_dir, '*.json'))
    for image_id, label_file in enumerate(label_files):
        print('Generating dataset from:', label_file)
        with open(label_file) as f:
            label_data = json.load(f)

        base = osp.splitext(osp.basename(label_file))[0]
        out_img_file = osp.join(
            args.output_dir, 'JPEGImages', base + '.jpg'
        )

        img_file = osp.join(
            osp.dirname(label_file), label_data['imagePath']
        )
        img = np.asarray(PIL.Image.open(img_file))
        PIL.Image.fromarray(img).save(out_img_file)
        data['images'].append(dict(
            license=0,
            url=None,
            file_name=osp.relpath(out_img_file, osp.dirname(out_ann_file)),
            height=img.shape[0],
            width=img.shape[1],
            date_captured=None,
            id=image_id,
        ))

        masks = {}                                     # for area
        segmentations = collections.defaultdict(list)  # for segmentation
        for shape in label_data['shapes']:
            points = shape['points']
            label = shape['label']
            shape_type = shape.get('shape_type', None)
            mask = labelme.utils.shape_to_mask(
                img.shape[:2], points, shape_type
            )

            if label in masks:
                masks[label] = masks[label] | mask
            else:
                masks[label] = mask

            points = np.asarray(points).flatten().tolist()
            segmentations[label].append(points)

        for label, mask in masks.items():
            cls_name = label.split('-')[0]
            if cls_name not in class_name_to_id:
                continue
            cls_id = class_name_to_id[cls_name]

            mask = np.asfortranarray(mask.astype(np.uint8))
            mask = pycocotools.mask.encode(mask)
            area = float(pycocotools.mask.area(mask))
            bbox = pycocotools.mask.toBbox(mask).flatten().tolist()

            data['annotations'].append(dict(
                id=len(data['annotations']),
                image_id=image_id,
                category_id=cls_id,
                segmentation=segmentations[label],
                area=area,
                bbox=bbox,
                iscrowd=0,
            ))

    with open(out_ann_file, 'w') as f:
        json.dump(data, f)


if __name__ == '__main__':
    main()