train.py 4.6 KB
Newer Older
F
FlyingQianMM 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
# coding: utf8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os.path as osp
import argparse
from paddlex.seg import transforms
import paddlex as pdx


def parse_args():
    parser = argparse.ArgumentParser(description='RemoteSensing training')
    parser.add_argument(
        '--data_dir',
        dest='data_dir',
        help='dataset directory',
        default=None,
        type=str)
F
FlyingQianMM 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    parser.add_argument(
        '--train_file_list',
        dest='train_file_list',
        help='train file_list',
        default=None,
        type=str)
    parser.add_argument(
        '--eval_file_list',
        dest='eval_file_list',
        help='eval file_list',
        default=None,
        type=str)
    parser.add_argument(
        '--label_list',
        dest='label_list',
        help='label_list file',
        default=None,
        type=str)
F
FlyingQianMM 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    parser.add_argument(
        '--save_dir',
        dest='save_dir',
        help='model save directory',
        default=None,
        type=str)
    parser.add_argument(
        '--num_classes',
        dest='num_classes',
        help='Number of classes',
        default=None,
        type=int)
    parser.add_argument(
        '--channel',
        dest='channel',
        help='number of data channel',
        default=3,
        type=int)
    parser.add_argument(
        '--clip_min_value',
        dest='clip_min_value',
        help='Min values for clipping data',
        nargs='+',
        default=None,
        type=int)
    parser.add_argument(
        '--clip_max_value',
        dest='clip_max_value',
        help='Max values for clipping data',
        nargs='+',
        default=None,
        type=int)
    parser.add_argument(
        '--mean',
        dest='mean',
        help='Data means',
        nargs='+',
        default=None,
        type=float)
    parser.add_argument(
        '--std',
        dest='std',
        help='Data standard deviation',
        nargs='+',
        default=None,
        type=float)
    parser.add_argument(
        '--num_epochs',
        dest='num_epochs',
        help='number of traing epochs',
        default=100,
        type=int)
    parser.add_argument(
        '--train_batch_size',
        dest='train_batch_size',
        help='training batch size',
        default=4,
        type=int)
    parser.add_argument(
        '--lr', dest='lr', help='learning rate', default=0.01, type=float)
    return parser.parse_args()


args = parse_args()
data_dir = args.data_dir
F
FlyingQianMM 已提交
113 114 115
train_list = args.train_file_list
val_list = args.eval_file_list
label_list = args.label_list
F
FlyingQianMM 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
save_dir = args.save_dir
num_classes = args.num_classes
channel = args.channel
clip_min_value = args.clip_min_value
clip_max_value = args.clip_max_value
mean = args.mean
std = args.std
num_epochs = args.num_epochs
train_batch_size = args.train_batch_size
lr = args.lr

# 定义训练和验证时的transforms
train_transforms = transforms.Compose([
    transforms.RandomVerticalFlip(0.5),
    transforms.RandomHorizontalFlip(0.5),
    transforms.ResizeStepScaling(0.5, 2.0, 0.25),
    transforms.RandomPaddingCrop(im_padding_value=[1000] * channel),
F
FlyingQianMM 已提交
133
    transforms.Clip(
F
FlyingQianMM 已提交
134 135 136 137 138 139
        min_val=clip_min_value, max_val=clip_max_value),
    transforms.Normalize(
        min_val=clip_min_value, max_val=clip_max_value, mean=mean, std=std),
])

eval_transforms = transforms.Compose([
F
FlyingQianMM 已提交
140
    transforms.Clip(
F
FlyingQianMM 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
        min_val=clip_min_value, max_val=clip_max_value),
    transforms.Normalize(
        min_val=clip_min_value, max_val=clip_max_value, mean=mean, std=std),
])

train_dataset = pdx.datasets.SegDataset(
    data_dir=data_dir,
    file_list=train_list,
    label_list=label_list,
    transforms=train_transforms,
    shuffle=True)
eval_dataset = pdx.datasets.SegDataset(
    data_dir=data_dir,
    file_list=val_list,
    label_list=label_list,
    transforms=eval_transforms)

model = pdx.seg.UNet(num_classes=num_classes, input_channel=channel)

model.train(
    num_epochs=num_epochs,
    train_dataset=train_dataset,
    train_batch_size=train_batch_size,
    eval_dataset=eval_dataset,
    save_interval_epochs=5,
    log_interval_steps=10,
    save_dir=save_dir,
    learning_rate=lr,
    use_vdl=True)