Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
e095fa06
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
接近 2 年 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e095fa06
编写于
11月 25, 2019
作者:
W
wanghaoshuang
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
http://gitlab.baidu.com/PaddlePaddle/PaddleSlim
into greedy_prune
上级
94aafddc
0073f078
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
658 addition
and
163 deletion
+658
-163
demo/distillation/train.py
demo/distillation/train.py
+238
-0
demo/nas/sa_nas_mobilenetv2.py
demo/nas/sa_nas_mobilenetv2.py
+276
-0
demo/nas/sa_nas_mobilenetv2_cifar10.py
demo/nas/sa_nas_mobilenetv2_cifar10.py
+0
-122
paddleslim/core/graph_wrapper.py
paddleslim/core/graph_wrapper.py
+8
-0
paddleslim/nas/sa_nas.py
paddleslim/nas/sa_nas.py
+8
-3
paddleslim/nas/search_space/combine_search_space.py
paddleslim/nas/search_space/combine_search_space.py
+6
-3
paddleslim/nas/search_space/mobilenetv1.py
paddleslim/nas/search_space/mobilenetv1.py
+3
-1
paddleslim/nas/search_space/mobilenetv2.py
paddleslim/nas/search_space/mobilenetv2.py
+82
-17
paddleslim/nas/search_space/search_space_base.py
paddleslim/nas/search_space/search_space_base.py
+9
-1
paddleslim/prune/pruner.py
paddleslim/prune/pruner.py
+22
-14
tests/test_prune.py
tests/test_prune.py
+1
-1
tests/test_sa_nas.py
tests/test_sa_nas.py
+5
-1
未找到文件。
demo/distillation/train.py
0 → 100644
浏览文件 @
e095fa06
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
sys
import
math
import
logging
import
paddle
import
argparse
import
functools
import
numpy
as
np
import
paddle.fluid
as
fluid
sys
.
path
.
append
(
sys
.
path
[
0
]
+
"/../"
)
import
models
import
imagenet_reader
as
reader
from
utility
import
add_arguments
,
print_arguments
from
paddleslim.dist
import
merge
,
l2_loss
,
soft_label_loss
,
fsp_loss
logging
.
basicConfig
(
format
=
'%(asctime)s-%(levelname)s: %(message)s'
)
_logger
=
logging
.
getLogger
(
__name__
)
_logger
.
setLevel
(
logging
.
INFO
)
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
add_arg
=
functools
.
partial
(
add_arguments
,
argparser
=
parser
)
# yapf: disable
add_arg
(
'batch_size'
,
int
,
64
*
4
,
"Minibatch size."
)
add_arg
(
'use_gpu'
,
bool
,
True
,
"Whether to use GPU or not."
)
add_arg
(
'total_images'
,
int
,
1281167
,
"Training image number."
)
add_arg
(
'image_shape'
,
str
,
"3,224,224"
,
"Input image size"
)
add_arg
(
'lr'
,
float
,
0.1
,
"The learning rate used to fine-tune pruned model."
)
add_arg
(
'lr_strategy'
,
str
,
"piecewise_decay"
,
"The learning rate decay strategy."
)
add_arg
(
'l2_decay'
,
float
,
3e-5
,
"The l2_decay parameter."
)
add_arg
(
'momentum_rate'
,
float
,
0.9
,
"The value of momentum_rate."
)
add_arg
(
'num_epochs'
,
int
,
120
,
"The number of total epochs."
)
add_arg
(
'data'
,
str
,
"mnist"
,
"Which data to use. 'mnist' or 'imagenet'"
)
add_arg
(
'log_period'
,
int
,
20
,
"Log period in batches."
)
add_arg
(
'model'
,
str
,
"MobileNet"
,
"Set the network to use."
)
add_arg
(
'pretrained_model'
,
str
,
None
,
"Whether to use pretrained model."
)
add_arg
(
'teacher_model'
,
str
,
"ResNet50"
,
"Set the teacher network to use."
)
add_arg
(
'teacher_pretrained_model'
,
str
,
"../pretrain/ResNet50_pretrained"
,
"Whether to use pretrained model."
)
parser
.
add_argument
(
'--step_epochs'
,
nargs
=
'+'
,
type
=
int
,
default
=
[
30
,
60
,
90
],
help
=
"piecewise decay step"
)
# yapf: enable
model_list
=
[
m
for
m
in
dir
(
models
)
if
"__"
not
in
m
]
def
piecewise_decay
(
args
):
step
=
int
(
math
.
ceil
(
float
(
args
.
total_images
)
/
args
.
batch_size
))
bd
=
[
step
*
e
for
e
in
args
.
step_epochs
]
lr
=
[
args
.
lr
*
(
0.1
**
i
)
for
i
in
range
(
len
(
bd
)
+
1
)]
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
bd
,
values
=
lr
)
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
learning_rate
,
momentum
=
args
.
momentum_rate
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
args
.
l2_decay
))
return
optimizer
def
cosine_decay
(
args
):
step
=
int
(
math
.
ceil
(
float
(
args
.
total_images
)
/
args
.
batch_size
))
learning_rate
=
fluid
.
layers
.
cosine_decay
(
learning_rate
=
args
.
lr
,
step_each_epoch
=
step
,
epochs
=
args
.
num_epochs
)
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
learning_rate
,
momentum
=
args
.
momentum_rate
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
args
.
l2_decay
))
return
optimizer
def
create_optimizer
(
args
):
if
args
.
lr_strategy
==
"piecewise_decay"
:
return
piecewise_decay
(
args
)
elif
args
.
lr_strategy
==
"cosine_decay"
:
return
cosine_decay
(
args
)
def
compress
(
args
):
if
args
.
data
==
"mnist"
:
import
paddle.dataset.mnist
as
reader
train_reader
=
reader
.
train
()
val_reader
=
reader
.
test
()
class_dim
=
10
image_shape
=
"1,28,28"
elif
args
.
data
==
"imagenet"
:
import
imagenet_reader
as
reader
train_reader
=
reader
.
train
()
val_reader
=
reader
.
val
()
class_dim
=
1000
image_shape
=
"3,224,224"
else
:
raise
ValueError
(
"{} is not supported."
.
format
(
args
.
data
))
image_shape
=
[
int
(
m
)
for
m
in
image_shape
.
split
(
","
)]
assert
args
.
model
in
model_list
,
"{} is not in lists: {}"
.
format
(
args
.
model
,
model_list
)
student_program
=
fluid
.
Program
()
s_startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
student_program
,
s_startup
):
with
fluid
.
unique_name
.
guard
():
image
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
image_shape
,
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
train_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
[
image
,
label
],
capacity
=
64
,
use_double_buffer
=
True
,
iterable
=
True
)
valid_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
[
image
,
label
],
capacity
=
64
,
use_double_buffer
=
True
,
iterable
=
True
)
# model definition
model
=
models
.
__dict__
[
args
.
model
]()
out
=
model
.
net
(
input
=
image
,
class_dim
=
class_dim
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
out
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc_top1
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
1
)
acc_top5
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
5
)
#print("="*50+"student_model_params"+"="*50)
#for v in student_program.list_vars():
# print(v.name, v.shape)
place
=
fluid
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
train_reader
=
paddle
.
batch
(
train_reader
,
batch_size
=
args
.
batch_size
,
drop_last
=
True
)
val_reader
=
paddle
.
batch
(
val_reader
,
batch_size
=
args
.
batch_size
,
drop_last
=
True
)
val_program
=
student_program
.
clone
(
for_test
=
True
)
places
=
fluid
.
cuda_places
()
train_loader
.
set_sample_list_generator
(
train_reader
,
places
)
valid_loader
.
set_sample_list_generator
(
val_reader
,
place
)
teacher_model
=
models
.
__dict__
[
args
.
teacher_model
]()
# define teacher program
teacher_program
=
fluid
.
Program
()
t_startup
=
fluid
.
Program
()
teacher_scope
=
fluid
.
Scope
()
with
fluid
.
scope_guard
(
teacher_scope
):
with
fluid
.
program_guard
(
teacher_program
,
t_startup
):
with
fluid
.
unique_name
.
guard
():
image
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
image_shape
,
dtype
=
'float32'
)
predict
=
teacher_model
.
net
(
image
,
class_dim
=
class_dim
)
#print("="*50+"teacher_model_params"+"="*50)
#for v in teacher_program.list_vars():
# print(v.name, v.shape)
exe
.
run
(
t_startup
)
assert
args
.
teacher_pretrained_model
and
os
.
path
.
exists
(
args
.
teacher_pretrained_model
),
"teacher_pretrained_model should be set when teacher_model is not None."
def
if_exist
(
var
):
return
os
.
path
.
exists
(
os
.
path
.
join
(
args
.
teacher_pretrained_model
,
var
.
name
)
)
and
var
.
name
!=
'conv1_weights'
and
var
.
name
!=
'fc_0.w_0'
and
var
.
name
!=
'fc_0.b_0'
fluid
.
io
.
load_vars
(
exe
,
args
.
teacher_pretrained_model
,
main_program
=
teacher_program
,
predicate
=
if_exist
)
data_name_map
=
{
'image'
:
'image'
}
main
=
merge
(
teacher_program
,
student_program
,
data_name_map
,
place
,
teacher_scope
=
teacher_scope
)
#print("="*50+"teacher_vars"+"="*50)
#for v in teacher_program.list_vars():
# if '_generated_var' not in v.name and 'fetch' not in v.name and 'feed' not in v.name:
# print(v.name, v.shape)
#return
with
fluid
.
program_guard
(
main
,
s_startup
):
l2_loss_v
=
l2_loss
(
"teacher_fc_0.tmp_0"
,
"fc_0.tmp_0"
,
main
)
fsp_loss_v
=
fsp_loss
(
"teacher_res2a_branch2a.conv2d.output.1.tmp_0"
,
"teacher_res3a_branch2a.conv2d.output.1.tmp_0"
,
"depthwise_conv2d_1.tmp_0"
,
"conv2d_3.tmp_0"
,
main
)
loss
=
avg_cost
+
l2_loss_v
+
fsp_loss_v
opt
=
create_optimizer
(
args
)
opt
.
minimize
(
loss
)
exe
.
run
(
s_startup
)
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
fuse_all_reduce_ops
=
False
parallel_main
=
fluid
.
CompiledProgram
(
main
).
with_data_parallel
(
loss_name
=
loss
.
name
,
build_strategy
=
build_strategy
)
for
epoch_id
in
range
(
args
.
num_epochs
):
for
step_id
,
data
in
enumerate
(
train_loader
):
loss_1
,
loss_2
,
loss_3
,
loss_4
=
exe
.
run
(
parallel_main
,
feed
=
data
,
fetch_list
=
[
loss
.
name
,
avg_cost
.
name
,
l2_loss_v
.
name
,
fsp_loss_v
.
name
])
if
step_id
%
args
.
log_period
==
0
:
_logger
.
info
(
"train_epoch {} step {} loss {:.6f}, class loss {:.6f}, l2 loss {:.6f}, fsp loss {:.6f}"
.
format
(
epoch_id
,
step_id
,
loss_1
[
0
],
loss_2
[
0
],
loss_3
[
0
],
loss_4
[
0
]))
val_acc1s
=
[]
val_acc5s
=
[]
for
step_id
,
data
in
enumerate
(
valid_loader
):
val_loss
,
val_acc1
,
val_acc5
=
exe
.
run
(
val_program
,
data
,
fetch_list
=
[
avg_cost
.
name
,
acc_top1
.
name
,
acc_top5
.
name
])
val_acc1s
.
append
(
val_acc1
)
val_acc5s
.
append
(
val_acc5
)
if
step_id
%
args
.
log_period
==
0
:
_logger
.
info
(
"valid_epoch {} step {} loss {:.6f}, top1 {:.6f}, top5 {:.6f}"
.
format
(
epoch_id
,
step_id
,
val_loss
[
0
],
val_acc1
[
0
],
val_acc5
[
0
]))
_logger
.
info
(
"epoch {} top1 {:.6f}, top5 {:.6f}"
.
format
(
epoch_id
,
np
.
mean
(
val_acc1s
),
np
.
mean
(
val_acc5s
)))
def
main
():
args
=
parser
.
parse_args
()
print_arguments
(
args
)
compress
(
args
)
if
__name__
==
'__main__'
:
main
()
demo/nas/sa_nas_mobilenetv2.py
0 → 100644
浏览文件 @
e095fa06
import
sys
sys
.
path
.
append
(
'..'
)
import
numpy
as
np
import
argparse
import
ast
import
time
import
argparse
import
ast
import
logging
import
paddle
import
paddle.fluid
as
fluid
from
paddleslim.nas.search_space.search_space_factory
import
SearchSpaceFactory
from
paddleslim.analysis
import
flops
from
paddleslim.nas
import
SANAS
from
paddleslim.common
import
get_logger
from
optimizer
import
create_optimizer
import
imagenet_reader
_logger
=
get_logger
(
__name__
,
level
=
logging
.
INFO
)
def
create_data_loader
(
image_shape
):
data_shape
=
[
-
1
]
+
image_shape
data
=
fluid
.
data
(
name
=
'data'
,
shape
=
data_shape
,
dtype
=
'float32'
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
-
1
,
1
],
dtype
=
'int64'
)
data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
[
data
,
label
],
capacity
=
1024
,
use_double_buffer
=
True
,
iterable
=
True
)
return
data_loader
,
data
,
label
def
build_program
(
main_program
,
startup_program
,
image_shape
,
archs
,
args
,
is_test
=
False
):
with
fluid
.
program_guard
(
main_program
,
startup_program
):
data_loader
,
data
,
label
=
create_data_loader
(
image_shape
)
output
=
archs
(
data
)
softmax_out
=
fluid
.
layers
.
softmax
(
input
=
output
,
use_cudnn
=
False
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
softmax_out
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
acc_top1
=
fluid
.
layers
.
accuracy
(
input
=
softmax_out
,
label
=
label
,
k
=
1
)
acc_top5
=
fluid
.
layers
.
accuracy
(
input
=
softmax_out
,
label
=
label
,
k
=
5
)
if
is_test
==
False
:
optimizer
=
create_optimizer
(
args
)
optimizer
.
minimize
(
avg_cost
)
return
data_loader
,
avg_cost
,
acc_top1
,
acc_top5
def
search_mobilenetv2
(
config
,
args
,
image_size
,
is_server
=
True
):
factory
=
SearchSpaceFactory
()
space
=
factory
.
get_search_space
(
config
)
if
is_server
:
### start a server and a client
sa_nas
=
SANAS
(
config
,
server_addr
=
(
""
,
8883
),
init_temperature
=
args
.
init_temperature
,
reduce_rate
=
args
.
reduce_rate
,
search_steps
=
args
.
search_steps
,
is_server
=
True
)
else
:
### start a client
sa_nas
=
SANAS
(
config
,
server_addr
=
(
"10.255.125.38"
,
8883
),
init_temperature
=
args
.
init_temperature
,
reduce_rate
=
args
.
reduce_rate
,
search_steps
=
args
.
search_steps
,
is_server
=
False
)
image_shape
=
[
3
,
image_size
,
image_size
]
for
step
in
range
(
args
.
search_steps
):
archs
=
sa_nas
.
next_archs
()[
0
]
train_program
=
fluid
.
Program
()
test_program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
train_loader
,
avg_cost
,
acc_top1
,
acc_top5
=
build_program
(
train_program
,
startup_program
,
image_shape
,
archs
,
args
)
current_flops
=
flops
(
train_program
)
print
(
'step: {}, current_flops: {}'
.
format
(
step
,
current_flops
))
if
current_flops
>
args
.
max_flops
:
continue
test_loader
,
test_avg_cost
,
test_acc_top1
,
test_acc_top5
=
build_program
(
test_program
,
startup_program
,
image_shape
,
archs
,
args
,
is_test
=
True
)
test_program
=
test_program
.
clone
(
for_test
=
True
)
place
=
fluid
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_program
)
if
args
.
data
==
'cifar10'
:
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
cifar
.
train10
(
cycle
=
False
),
buf_size
=
1024
),
batch_size
=
args
.
batch_size
,
drop_last
=
True
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
cifar
.
test10
(
cycle
=
False
),
batch_size
=
args
.
batch_size
,
drop_last
=
False
)
elif
args
.
data
==
'imagenet'
:
train_reader
=
paddle
.
batch
(
imagenet_reader
.
train
(),
batch_size
=
args
.
batch_size
,
drop_last
=
True
)
test_reader
=
paddle
.
batch
(
imagenet_reader
.
val
(),
batch_size
=
args
.
batch_size
,
drop_last
=
False
)
#test_loader, _, _ = create_data_loader(image_shape)
train_loader
.
set_sample_list_generator
(
train_reader
,
places
=
fluid
.
cuda_places
()
if
args
.
use_gpu
else
fluid
.
cpu_places
())
test_loader
.
set_sample_list_generator
(
test_reader
,
places
=
place
)
build_strategy
=
fluid
.
BuildStrategy
()
train_compiled_program
=
fluid
.
CompiledProgram
(
train_program
).
with_data_parallel
(
loss_name
=
avg_cost
.
name
,
build_strategy
=
build_strategy
)
for
epoch_id
in
range
(
args
.
retain_epoch
):
for
batch_id
,
data
in
enumerate
(
train_loader
()):
fetches
=
[
avg_cost
.
name
]
s_time
=
time
.
time
()
outs
=
exe
.
run
(
train_compiled_program
,
feed
=
data
,
fetch_list
=
fetches
)[
0
]
batch_time
=
time
.
time
()
-
s_time
if
batch_id
%
10
==
0
:
_logger
.
info
(
'TRAIN: steps: {}, epoch: {}, batch: {}, cost: {}, batch_time: {}ms'
.
format
(
step
,
epoch_id
,
batch_id
,
outs
[
0
],
batch_time
))
reward
=
[]
for
batch_id
,
data
in
enumerate
(
test_loader
()):
test_fetches
=
[
test_avg_cost
.
name
,
test_acc_top1
.
name
,
test_acc_top5
.
name
]
batch_reward
=
exe
.
run
(
test_program
,
feed
=
data
,
fetch_list
=
test_fetches
)
reward_avg
=
np
.
mean
(
np
.
array
(
batch_reward
),
axis
=
1
)
reward
.
append
(
reward_avg
)
_logger
.
info
(
'TEST: step: {}, batch: {}, avg_cost: {}, acc_top1: {}, acc_top5: {}'
.
format
(
step
,
batch_id
,
batch_reward
[
0
],
batch_reward
[
1
],
batch_reward
[
2
]))
finally_reward
=
np
.
mean
(
np
.
array
(
reward
),
axis
=
0
)
_logger
.
info
(
'FINAL TEST: avg_cost: {}, acc_top1: {}, acc_top5: {}'
.
format
(
finally_reward
[
0
],
finally_reward
[
1
],
finally_reward
[
2
]))
sa_nas
.
reward
(
float
(
finally_reward
[
1
]))
if
__name__
==
'__main__'
:
parser
=
argparse
.
ArgumentParser
(
description
=
'SA NAS MobileNetV2 cifar10 argparase'
)
parser
.
add_argument
(
'--use_gpu'
,
type
=
ast
.
literal_eval
,
default
=
True
,
help
=
'Whether to use GPU in train/test model.'
)
parser
.
add_argument
(
'--batch_size'
,
type
=
int
,
default
=
256
,
help
=
'batch size.'
)
parser
.
add_argument
(
'--data'
,
type
=
str
,
default
=
'cifar10'
,
choices
=
[
'cifar10'
,
'imagenet'
],
help
=
'server address.'
)
# controller
parser
.
add_argument
(
'--reduce_rate'
,
type
=
float
,
default
=
0.85
,
help
=
'reduce rate.'
)
parser
.
add_argument
(
'--init_temperature'
,
type
=
float
,
default
=
10.24
,
help
=
'init temperature.'
)
parser
.
add_argument
(
'--is_server'
,
type
=
ast
.
literal_eval
,
default
=
True
,
help
=
'Whether to start a server.'
)
# nas args
parser
.
add_argument
(
'--max_flops'
,
type
=
int
,
default
=
592948064
,
help
=
'reduce rate.'
)
parser
.
add_argument
(
'--retain_epoch'
,
type
=
int
,
default
=
5
,
help
=
'train epoch before val.'
)
parser
.
add_argument
(
'--end_epoch'
,
type
=
int
,
default
=
500
,
help
=
'end epoch present client.'
)
parser
.
add_argument
(
'--search_steps'
,
type
=
int
,
default
=
100
,
help
=
'controller server number.'
)
parser
.
add_argument
(
'--server_address'
,
type
=
str
,
default
=
None
,
help
=
'server address.'
)
# optimizer args
parser
.
add_argument
(
'--lr_strategy'
,
type
=
str
,
default
=
'piecewise_decay'
,
help
=
'learning rate decay strategy.'
)
parser
.
add_argument
(
'--lr'
,
type
=
float
,
default
=
0.1
,
help
=
'learning rate.'
)
parser
.
add_argument
(
'--l2_decay'
,
type
=
float
,
default
=
1e-4
,
help
=
'learning rate decay.'
)
parser
.
add_argument
(
'--step_epochs'
,
nargs
=
'+'
,
type
=
int
,
default
=
[
30
,
60
,
90
],
help
=
"piecewise decay step"
)
parser
.
add_argument
(
'--momentum_rate'
,
type
=
float
,
default
=
0.9
,
help
=
'learning rate decay.'
)
parser
.
add_argument
(
'--warm_up_epochs'
,
type
=
float
,
default
=
5.0
,
help
=
'learning rate decay.'
)
parser
.
add_argument
(
'--num_epochs'
,
type
=
int
,
default
=
120
,
help
=
'learning rate decay.'
)
parser
.
add_argument
(
'--decay_epochs'
,
type
=
float
,
default
=
2.4
,
help
=
'learning rate decay.'
)
parser
.
add_argument
(
'--decay_rate'
,
type
=
float
,
default
=
0.97
,
help
=
'learning rate decay.'
)
parser
.
add_argument
(
'--total_images'
,
type
=
int
,
default
=
1281167
,
help
=
'learning rate decay.'
)
args
=
parser
.
parse_args
()
print
(
args
)
if
args
.
data
==
'cifar10'
:
image_size
=
32
block_num
=
3
elif
args
.
data
==
'imagenet'
:
image_size
=
224
block_num
=
6
else
:
raise
NotImplemented
(
'data must in [cifar10, imagenet], but received: {}'
.
format
(
args
.
data
))
config_info
=
{
'input_size'
:
image_size
,
'output_size'
:
1
,
'block_num'
:
block_num
,
'block_mask'
:
None
}
config
=
[(
'MobileNetV2Space'
,
config_info
)]
search_mobilenetv2
(
config
,
args
,
image_size
,
is_server
=
args
.
is_server
)
demo/nas/sa_nas_mobilenetv2_cifar10.py
已删除
100644 → 0
浏览文件 @
94aafddc
import
sys
sys
.
path
.
append
(
'..'
)
import
numpy
as
np
import
argparse
import
ast
import
paddle
import
paddle.fluid
as
fluid
from
paddleslim.nas.search_space.search_space_factory
import
SearchSpaceFactory
from
paddleslim.analysis
import
flops
from
paddleslim.nas
import
SANAS
def
create_data_loader
():
data
=
fluid
.
data
(
name
=
'data'
,
shape
=
[
-
1
,
3
,
32
,
32
],
dtype
=
'float32'
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
-
1
,
1
],
dtype
=
'int64'
)
data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
[
data
,
label
],
capacity
=
1024
,
use_double_buffer
=
True
,
iterable
=
True
)
return
data_loader
,
data
,
label
def
init_sa_nas
(
config
):
factory
=
SearchSpaceFactory
()
space
=
factory
.
get_search_space
(
config
)
model_arch
=
space
.
token2arch
()[
0
]
main_program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main_program
,
startup_program
):
data_loader
,
data
,
label
=
create_data_loader
()
output
=
model_arch
(
data
)
cost
=
fluid
.
layers
.
mean
(
fluid
.
layers
.
softmax_with_cross_entropy
(
logits
=
output
,
label
=
label
))
base_flops
=
flops
(
main_program
)
search_steps
=
10000000
### start a server and a client
sa_nas
=
SANAS
(
config
,
search_steps
=
search_steps
,
is_server
=
True
)
### start a client, server_addr is server address
#sa_nas = SANAS(config, max_flops = base_flops, server_addr=("10.255.125.38", 18607), search_steps = search_steps, is_server=False)
return
sa_nas
,
search_steps
def
search_mobilenetv2_cifar10
(
config
,
args
):
sa_nas
,
search_steps
=
init_sa_nas
(
config
)
for
i
in
range
(
search_steps
):
print
(
'search step: '
,
i
)
archs
=
sa_nas
.
next_archs
()[
0
]
train_program
=
fluid
.
Program
()
test_program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
train_program
,
startup_program
):
train_loader
,
data
,
label
=
create_data_loader
()
output
=
archs
(
data
)
cost
=
fluid
.
layers
.
mean
(
fluid
.
layers
.
softmax_with_cross_entropy
(
logits
=
output
,
label
=
label
))[
0
]
test_program
=
train_program
.
clone
(
for_test
=
True
)
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
0.1
,
momentum
=
0.9
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
1e-4
))
optimizer
.
minimize
(
cost
)
place
=
fluid
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_program
)
train_reader
=
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
cifar
.
train10
(
cycle
=
False
),
buf_size
=
1024
)
train_loader
.
set_sample_generator
(
train_reader
,
batch_size
=
512
,
places
=
fluid
.
cuda_places
()
if
args
.
use_gpu
else
fluid
.
cpu_places
())
test_loader
,
_
,
_
=
create_data_loader
()
test_reader
=
paddle
.
dataset
.
cifar
.
test10
(
cycle
=
False
)
test_loader
.
set_sample_generator
(
test_reader
,
batch_size
=
256
,
drop_last
=
False
,
places
=
fluid
.
cuda_places
()
if
args
.
use_gpu
else
fluid
.
cpu_places
())
for
epoch_id
in
range
(
10
):
for
batch_id
,
data
in
enumerate
(
train_loader
()):
loss
=
exe
.
run
(
train_program
,
feed
=
data
,
fetch_list
=
[
cost
.
name
])[
0
]
if
batch_id
%
5
==
0
:
print
(
'epoch: {}, batch: {}, loss: {}'
.
format
(
epoch_id
,
batch_id
,
loss
[
0
]))
for
data
in
test_loader
():
reward
=
exe
.
run
(
test_program
,
feed
=
data
,
fetch_list
=
[
cost
.
name
])[
0
]
print
(
'reward:'
,
reward
)
sa_nas
.
reward
(
float
(
reward
))
if
__name__
==
'__main__'
:
parser
=
argparse
.
ArgumentParser
(
description
=
'SA NAS MobileNetV2 cifar10 argparase'
)
parser
.
add_argument
(
'--use_gpu'
,
type
=
ast
.
literal_eval
,
default
=
True
,
help
=
'Whether to use GPU in train/test model.'
)
args
=
parser
.
parse_args
()
print
(
args
)
config_info
=
{
'input_size'
:
32
,
'output_size'
:
1
,
'block_num'
:
5
}
config
=
[(
'MobileNetV2Space'
,
config_info
)]
search_mobilenetv2_cifar10
(
config
,
args
)
paddleslim/core/graph_wrapper.py
浏览文件 @
e095fa06
...
...
@@ -54,6 +54,9 @@ class VarWrapper(object):
"""
return
self
.
_var
.
name
def
__repr__
(
self
):
return
self
.
_var
.
name
def
shape
(
self
):
"""
Get the shape of the varibale.
...
...
@@ -131,6 +134,11 @@ class OpWrapper(object):
"""
return
self
.
_op
.
type
def
__repr__
(
self
):
return
"op[id: {}, type: {}; inputs: {}]"
.
format
(
self
.
idx
(),
self
.
type
(),
self
.
all_inputs
())
def
is_bwd_op
(
self
):
"""
Whether this operator is backward op.
...
...
paddleslim/nas/sa_nas.py
浏览文件 @
e095fa06
...
...
@@ -60,16 +60,17 @@ class SANAS(object):
self
.
_init_temperature
=
init_temperature
self
.
_is_server
=
is_server
self
.
_configs
=
configs
self
.
_key
s
=
hashlib
.
md5
(
str
(
self
.
_configs
)).
hexdigest
()
self
.
_key
=
hashlib
.
md5
(
str
(
self
.
_configs
)).
hexdigest
()
server_ip
,
server_port
=
server_addr
if
server_ip
==
None
or
server_ip
==
""
:
server_ip
=
self
.
_get_host_ip
()
factory
=
SearchSpaceFactory
()
self
.
_search_space
=
factory
.
get_search_space
(
configs
)
# create controller server
if
self
.
_is_server
:
factory
=
SearchSpaceFactory
()
self
.
_search_space
=
factory
.
get_search_space
(
configs
)
init_tokens
=
self
.
_search_space
.
init_tokens
()
range_table
=
self
.
_search_space
.
range_table
()
range_table
=
(
len
(
range_table
)
*
[
0
],
range_table
)
...
...
@@ -90,6 +91,7 @@ class SANAS(object):
search_steps
=
search_steps
,
key
=
self
.
_key
)
self
.
_controller_server
.
start
()
server_port
=
self
.
_controller_server
.
port
()
self
.
_controller_client
=
ControllerClient
(
server_ip
,
server_port
,
key
=
self
.
_key
)
...
...
@@ -99,6 +101,9 @@ class SANAS(object):
def
_get_host_ip
(
self
):
return
socket
.
gethostbyname
(
socket
.
gethostname
())
def
tokens2arch
(
self
,
tokens
):
return
self
.
_search_space
.
token2arch
(
self
.
tokens
)
def
next_archs
(
self
):
"""
Get next network architectures.
...
...
paddleslim/nas/search_space/combine_search_space.py
浏览文件 @
e095fa06
...
...
@@ -39,6 +39,7 @@ class CombineSearchSpace(object):
for
config_list
in
config_lists
:
key
,
config
=
config_list
self
.
spaces
.
append
(
self
.
_get_single_search_space
(
key
,
config
))
self
.
init_tokens
()
def
_get_single_search_space
(
self
,
key
,
config
):
"""
...
...
@@ -51,9 +52,11 @@ class CombineSearchSpace(object):
model space(class)
"""
cls
=
SEARCHSPACE
.
get
(
key
)
space
=
cls
(
config
[
'input_size'
],
config
[
'output_size'
],
config
[
'block_num'
],
config
[
'block_mask'
])
block_mask
=
config
[
'block_mask'
]
if
'block_mask'
in
config
else
None
space
=
cls
(
config
[
'input_size'
],
config
[
'output_size'
],
config
[
'block_num'
],
block_mask
=
block_mask
)
return
space
def
init_tokens
(
self
):
...
...
paddleslim/nas/search_space/mobilenetv1.py
浏览文件 @
e095fa06
...
...
@@ -32,10 +32,12 @@ class MobileNetV1Space(SearchSpaceBase):
input_size
,
output_size
,
block_num
,
block_mask
,
scale
=
1.0
,
class_dim
=
1000
):
super
(
MobileNetV1Space
,
self
).
__init__
(
input_size
,
output_size
,
block_num
)
block_num
,
block_mask
)
assert
self
.
block_mask
==
None
,
'MobileNetV1Space will use origin MobileNetV1 as seach space, so use input_size, output_size and block_num to search'
self
.
scale
=
scale
self
.
class_dim
=
class_dim
# self.head_num means the channel of first convolution
...
...
paddleslim/nas/search_space/mobilenetv2.py
浏览文件 @
e095fa06
...
...
@@ -113,40 +113,69 @@ class MobileNetV2Space(SearchSpaceBase):
if
tokens
is
None
:
tokens
=
self
.
init_tokens
()
print
(
tokens
)
bottleneck_params_list
=
[]
self
.
bottleneck_params_list
=
[]
if
self
.
block_num
>=
1
:
bottleneck_params_list
.
append
(
self
.
bottleneck_params_list
.
append
(
(
1
,
self
.
head_num
[
tokens
[
0
]],
1
,
1
,
3
))
if
self
.
block_num
>=
2
:
bottleneck_params_list
.
append
(
self
.
bottleneck_params_list
.
append
(
(
self
.
multiply
[
tokens
[
1
]],
self
.
filter_num1
[
tokens
[
2
]],
self
.
repeat
[
tokens
[
3
]],
2
,
self
.
k_size
[
tokens
[
4
]]))
if
self
.
block_num
>=
3
:
bottleneck_params_list
.
append
(
self
.
bottleneck_params_list
.
append
(
(
self
.
multiply
[
tokens
[
5
]],
self
.
filter_num1
[
tokens
[
6
]],
self
.
repeat
[
tokens
[
7
]],
2
,
self
.
k_size
[
tokens
[
8
]]))
if
self
.
block_num
>=
4
:
bottleneck_params_list
.
append
(
self
.
bottleneck_params_list
.
append
(
(
self
.
multiply
[
tokens
[
9
]],
self
.
filter_num2
[
tokens
[
10
]],
self
.
repeat
[
tokens
[
11
]],
2
,
self
.
k_size
[
tokens
[
12
]]))
if
self
.
block_num
>=
5
:
bottleneck_params_list
.
append
(
self
.
bottleneck_params_list
.
append
(
(
self
.
multiply
[
tokens
[
13
]],
self
.
filter_num3
[
tokens
[
14
]],
self
.
repeat
[
tokens
[
15
]],
2
,
self
.
k_size
[
tokens
[
16
]]))
bottleneck_params_list
.
append
(
self
.
bottleneck_params_list
.
append
(
(
self
.
multiply
[
tokens
[
17
]],
self
.
filter_num4
[
tokens
[
18
]],
self
.
repeat
[
tokens
[
19
]],
1
,
self
.
k_size
[
tokens
[
20
]]))
if
self
.
block_num
>=
6
:
bottleneck_params_list
.
append
(
self
.
bottleneck_params_list
.
append
(
(
self
.
multiply
[
tokens
[
21
]],
self
.
filter_num5
[
tokens
[
22
]],
self
.
repeat
[
tokens
[
23
]],
2
,
self
.
k_size
[
tokens
[
24
]]))
bottleneck_params_list
.
append
(
self
.
bottleneck_params_list
.
append
(
(
self
.
multiply
[
tokens
[
25
]],
self
.
filter_num6
[
tokens
[
26
]],
self
.
repeat
[
tokens
[
27
]],
1
,
self
.
k_size
[
tokens
[
28
]]))
def
net_arch
(
input
):
def
_modify_bottle_params
(
output_stride
=
None
):
if
output_stride
is
not
None
and
output_stride
%
2
!=
0
:
raise
Exception
(
"output stride must to be even number"
)
if
output_stride
is
None
:
return
else
:
stride
=
2
for
i
,
layer_setting
in
enumerate
(
self
.
bottleneck_params_list
):
t
,
c
,
n
,
s
,
ks
=
layer_setting
stride
=
stride
*
s
if
stride
>
output_stride
:
s
=
1
self
.
bottleneck_params_list
[
i
]
=
(
t
,
c
,
n
,
s
,
ks
)
def
net_arch
(
input
,
end_points
=
None
,
decode_points
=
None
,
output_stride
=
None
):
_modify_bottle_params
(
output_stride
)
decode_ends
=
dict
()
def
check_points
(
count
,
points
):
if
points
is
None
:
return
False
else
:
if
isinstance
(
points
,
list
):
return
(
True
if
count
in
points
else
False
)
else
:
return
(
True
if
count
==
points
else
False
)
#conv1
# all padding is 'SAME' in the conv2d, can compute the actual padding automatic.
input
=
conv_bn_layer
(
...
...
@@ -157,14 +186,21 @@ class MobileNetV2Space(SearchSpaceBase):
padding
=
'SAME'
,
act
=
'relu6'
,
name
=
'mobilenetv2_conv1_1'
)
layer_count
=
1
if
check_points
(
layer_count
,
decode_points
):
decode_ends
[
layer_count
]
=
input
if
check_points
(
layer_count
,
end_points
):
return
input
,
decode_ends
# bottleneck sequences
i
=
1
in_c
=
int
(
32
*
self
.
scale
)
for
layer_setting
in
bottleneck_params_list
:
for
layer_setting
in
self
.
bottleneck_params_list
:
t
,
c
,
n
,
s
,
k
=
layer_setting
i
+=
1
input
=
self
.
_invresi_blocks
(
#print(input)
input
,
depthwise_output
=
self
.
_invresi_blocks
(
input
=
input
,
in_c
=
in_c
,
t
=
t
,
...
...
@@ -174,6 +210,33 @@ class MobileNetV2Space(SearchSpaceBase):
k
=
k
,
name
=
'mobilenetv2_conv'
+
str
(
i
))
in_c
=
int
(
c
*
self
.
scale
)
layer_count
+=
1
### decode_points and end_points means block num
if
check_points
(
layer_count
,
decode_points
):
decode_ends
[
layer_count
]
=
depthwise_output
if
check_points
(
layer_count
,
end_points
):
return
input
,
decode_ends
# last conv
input
=
conv_bn_layer
(
input
=
input
,
num_filters
=
int
(
1280
*
self
.
scale
)
if
self
.
scale
>
1.0
else
1280
,
filter_size
=
1
,
stride
=
1
,
padding
=
'SAME'
,
act
=
'relu6'
,
name
=
'mobilenetv2_conv'
+
str
(
i
+
1
))
input
=
fluid
.
layers
.
pool2d
(
input
=
input
,
pool_size
=
7
,
pool_stride
=
1
,
pool_type
=
'avg'
,
global_pooling
=
True
,
name
=
'mobilenetv2_last_pool'
)
# if output_size is 1, add fc layer in the end
if
self
.
output_size
==
1
:
...
...
@@ -248,6 +311,8 @@ class MobileNetV2Space(SearchSpaceBase):
name
=
name
+
'_dwise'
,
use_cudnn
=
False
)
depthwise_output
=
bottleneck_conv
linear_out
=
conv_bn_layer
(
input
=
bottleneck_conv
,
num_filters
=
num_filters
,
...
...
@@ -260,7 +325,7 @@ class MobileNetV2Space(SearchSpaceBase):
out
=
linear_out
if
ifshortcut
:
out
=
self
.
_shortcut
(
input
=
input
,
data_residual
=
out
)
return
out
return
out
,
depthwise_output
def
_invresi_blocks
(
self
,
input
,
in_c
,
t
,
c
,
n
,
s
,
k
,
name
=
None
):
"""Build inverted residual blocks.
...
...
@@ -276,7 +341,7 @@ class MobileNetV2Space(SearchSpaceBase):
Returns:
Variable, layers output.
"""
first_block
=
self
.
_inverted_residual_unit
(
first_block
,
depthwise_output
=
self
.
_inverted_residual_unit
(
input
=
input
,
num_in_filter
=
in_c
,
num_filters
=
c
,
...
...
@@ -290,7 +355,7 @@ class MobileNetV2Space(SearchSpaceBase):
last_c
=
c
for
i
in
range
(
1
,
n
):
last_residual_block
=
self
.
_inverted_residual_unit
(
last_residual_block
,
depthwise_output
=
self
.
_inverted_residual_unit
(
input
=
last_residual_block
,
num_in_filter
=
last_c
,
num_filters
=
c
,
...
...
@@ -299,4 +364,4 @@ class MobileNetV2Space(SearchSpaceBase):
filter_size
=
k
,
expansion_factor
=
t
,
name
=
name
+
'_'
+
str
(
i
+
1
))
return
last_residual_block
return
last_residual_block
,
depthwise_output
paddleslim/nas/search_space/search_space_base.py
浏览文件 @
e095fa06
...
...
@@ -19,11 +19,19 @@ class SearchSpaceBase(object):
"""Controller for Neural Architecture Search.
"""
def
__init__
(
self
,
input_size
,
output_size
,
block_num
,
block_mask
,
*
argss
):
def
__init__
(
self
,
input_size
,
output_size
,
block_num
,
block_mask
,
*
args
):
"""init model config
"""
self
.
input_size
=
input_size
self
.
output_size
=
output_size
self
.
block_num
=
block_num
self
.
block_mask
=
block_mask
if
self
.
block_mask
is
not
None
:
assert
isinstance
(
self
.
block_mask
,
list
),
'Block_mask must be a list.'
print
(
"If block_mask is NOT None, we will use block_mask as major configs!"
)
def
init_tokens
(
self
):
"""Get init tokens in search space.
...
...
paddleslim/prune/pruner.py
浏览文件 @
e095fa06
...
...
@@ -528,33 +528,41 @@ class Pruner():
Returns:
list<VarWrapper>: A list of operators.
"""
_logger
.
debug
(
"######################search: {}######################"
.
format
(
op_node
))
visited
=
[
op_node
.
idx
()]
stack
=
[]
brothers
=
[]
for
op
in
graph
.
next_ops
(
op_node
):
if
(
op
.
type
()
!=
'conv2d'
)
and
(
op
.
type
()
!=
'fc'
)
and
(
not
op
.
is_bwd_op
()):
if
(
"conv2d"
not
in
op
.
type
()
)
and
(
op
.
type
()
!=
'fc'
)
and
(
not
op
.
is_bwd_op
())
and
(
not
op
.
is_opt_op
())
:
stack
.
append
(
op
)
visited
.
append
(
op
.
idx
())
while
len
(
stack
)
>
0
:
top_op
=
stack
.
pop
()
if
top_op
.
type
().
startswith
(
"elementwise_"
):
for
parent
in
graph
.
pre_ops
(
top_op
):
if
parent
.
idx
()
not
in
visited
and
(
not
parent
.
is_bwd_op
()):
if
((
parent
.
type
()
==
'conv2d'
)
or
(
parent
.
type
()
==
'fc'
)):
brothers
.
append
(
parent
)
else
:
stack
.
append
(
parent
)
visited
.
append
(
parent
.
idx
())
for
parent
in
graph
.
pre_ops
(
top_op
):
if
parent
.
idx
()
not
in
visited
and
(
not
parent
.
is_bwd_op
())
and
(
not
parent
.
is_opt_op
()):
_logger
.
debug
(
"----------go back from {} to {}----------"
.
format
(
top_op
,
parent
))
if
((
'conv2d'
in
parent
.
type
())
or
(
parent
.
type
()
==
'fc'
)):
brothers
.
append
(
parent
)
else
:
stack
.
append
(
parent
)
visited
.
append
(
parent
.
idx
())
for
child
in
graph
.
next_ops
(
top_op
):
if
(
child
.
type
()
!=
'conv2d'
)
and
(
child
.
type
()
!=
'fc'
)
and
(
if
(
'conv2d'
not
in
child
.
type
()
)
and
(
child
.
type
()
!=
'fc'
)
and
(
child
.
idx
()
not
in
visited
)
and
(
not
child
.
is_bwd_op
()):
not
child
.
is_bwd_op
())
and
(
not
child
.
is_opt_op
())
:
stack
.
append
(
child
)
visited
.
append
(
child
.
idx
())
_logger
.
debug
(
"brothers: {}"
.
format
(
brothers
))
_logger
.
debug
(
"######################Finish search######################"
.
format
(
op_node
))
return
brothers
def
_cal_pruned_idx
(
self
,
name
,
param
,
ratio
,
axis
):
...
...
tests/test_prune.py
浏览文件 @
e095fa06
...
...
@@ -15,7 +15,7 @@ import sys
sys
.
path
.
append
(
"../"
)
import
unittest
import
paddle.fluid
as
fluid
from
prune
import
Pruner
from
p
addleslim.p
rune
import
Pruner
from
layers
import
conv_bn_layer
...
...
tests/test_sa_nas.py
浏览文件 @
e095fa06
...
...
@@ -40,7 +40,11 @@ class TestSANAS(unittest.TestCase):
base_flops
=
flops
(
main_program
)
search_steps
=
3
sa_nas
=
SANAS
(
configs
,
search_steps
=
search_steps
,
is_server
=
True
)
sa_nas
=
SANAS
(
configs
,
search_steps
=
search_steps
,
server_addr
=
(
""
,
0
),
is_server
=
True
)
for
i
in
range
(
search_steps
):
archs
=
sa_nas
.
next_archs
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录