Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
94aafddc
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
接近 2 年 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
94aafddc
编写于
11月 25, 2019
作者:
W
wanghaoshuang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add greedy pruning by sensitives strategy.
上级
2ec1c445
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
293 addition
and
2 deletion
+293
-2
.gitignore
.gitignore
+5
-0
demo/sensitive_prune/greedy_prune.py
demo/sensitive_prune/greedy_prune.py
+231
-0
demo/sensitive_prune/prune.py
demo/sensitive_prune/prune.py
+0
-0
paddleslim/prune/sensitive.py
paddleslim/prune/sensitive.py
+6
-1
paddleslim/prune/sensitive_pruner.py
paddleslim/prune/sensitive_pruner.py
+51
-1
未找到文件。
.gitignore
浏览文件 @
94aafddc
...
...
@@ -3,3 +3,8 @@ build/
./dist/
*.pyc
dist/
*.data
*.log
*.tar
*.tar.gz
*.zip
demo/sensitive_prune/greedy_prune.py
0 → 100644
浏览文件 @
94aafddc
import
os
import
sys
import
logging
import
paddle
import
argparse
import
functools
import
math
import
time
import
numpy
as
np
import
paddle.fluid
as
fluid
from
paddleslim.prune
import
SensitivePruner
from
paddleslim.common
import
get_logger
from
paddleslim.analysis
import
flops
sys
.
path
.
append
(
sys
.
path
[
0
]
+
"/../"
)
import
models
from
utility
import
add_arguments
,
print_arguments
_logger
=
get_logger
(
__name__
,
level
=
logging
.
INFO
)
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
add_arg
=
functools
.
partial
(
add_arguments
,
argparser
=
parser
)
# yapf: disable
add_arg
(
'batch_size'
,
int
,
64
*
4
,
"Minibatch size."
)
add_arg
(
'use_gpu'
,
bool
,
True
,
"Whether to use GPU or not."
)
add_arg
(
'model'
,
str
,
"MobileNet"
,
"The target model."
)
add_arg
(
'pretrained_model'
,
str
,
"../pretrained_model/MobileNetV1_pretained"
,
"Whether to use pretrained model."
)
add_arg
(
'lr'
,
float
,
0.1
,
"The learning rate used to fine-tune pruned model."
)
add_arg
(
'lr_strategy'
,
str
,
"piecewise_decay"
,
"The learning rate decay strategy."
)
add_arg
(
'l2_decay'
,
float
,
3e-5
,
"The l2_decay parameter."
)
add_arg
(
'momentum_rate'
,
float
,
0.9
,
"The value of momentum_rate."
)
add_arg
(
'num_epochs'
,
int
,
120
,
"The number of total epochs."
)
add_arg
(
'total_images'
,
int
,
1281167
,
"The number of total training images."
)
parser
.
add_argument
(
'--step_epochs'
,
nargs
=
'+'
,
type
=
int
,
default
=
[
30
,
60
,
90
],
help
=
"piecewise decay step"
)
add_arg
(
'config_file'
,
str
,
None
,
"The config file for compression with yaml format."
)
add_arg
(
'data'
,
str
,
"mnist"
,
"Which data to use. 'mnist' or 'imagenet'"
)
add_arg
(
'log_period'
,
int
,
10
,
"Log period in batches."
)
add_arg
(
'test_period'
,
int
,
10
,
"Test period in epoches."
)
add_arg
(
'checkpoints'
,
str
,
"./checkpoints"
,
"Checkpoints path."
)
add_arg
(
'prune_steps'
,
int
,
1000
,
"prune steps."
)
add_arg
(
'retrain_epoch'
,
int
,
5
,
"Retrain epoch."
)
# yapf: enable
model_list
=
[
m
for
m
in
dir
(
models
)
if
"__"
not
in
m
]
def
piecewise_decay
(
args
):
step
=
int
(
math
.
ceil
(
float
(
args
.
total_images
)
/
args
.
batch_size
))
bd
=
[
step
*
e
for
e
in
args
.
step_epochs
]
lr
=
[
args
.
lr
*
(
0.1
**
i
)
for
i
in
range
(
len
(
bd
)
+
1
)]
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
bd
,
values
=
lr
)
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
learning_rate
,
momentum
=
args
.
momentum_rate
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
args
.
l2_decay
))
return
optimizer
def
cosine_decay
(
args
):
step
=
int
(
math
.
ceil
(
float
(
args
.
total_images
)
/
args
.
batch_size
))
learning_rate
=
fluid
.
layers
.
cosine_decay
(
learning_rate
=
args
.
lr
,
step_each_epoch
=
step
,
epochs
=
args
.
num_epochs
)
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
learning_rate
,
momentum
=
args
.
momentum_rate
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
args
.
l2_decay
))
return
optimizer
def
create_optimizer
(
args
):
if
args
.
lr_strategy
==
"piecewise_decay"
:
return
piecewise_decay
(
args
)
elif
args
.
lr_strategy
==
"cosine_decay"
:
return
cosine_decay
(
args
)
def
compress
(
args
):
train_reader
=
None
test_reader
=
None
if
args
.
data
==
"mnist"
:
import
paddle.dataset.mnist
as
reader
train_reader
=
reader
.
train
()
val_reader
=
reader
.
test
()
class_dim
=
10
image_shape
=
"1,28,28"
elif
args
.
data
==
"imagenet"
:
import
imagenet_reader
as
reader
train_reader
=
reader
.
train
()
val_reader
=
reader
.
val
()
class_dim
=
1000
image_shape
=
"3,224,224"
else
:
raise
ValueError
(
"{} is not supported."
.
format
(
args
.
data
))
image_shape
=
[
int
(
m
)
for
m
in
image_shape
.
split
(
","
)]
assert
args
.
model
in
model_list
,
"{} is not in lists: {}"
.
format
(
args
.
model
,
model_list
)
image
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
image_shape
,
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
# model definition
model
=
models
.
__dict__
[
args
.
model
]()
out
=
model
.
net
(
input
=
image
,
class_dim
=
class_dim
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
out
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc_top1
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
1
)
acc_top5
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
5
)
val_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
opt
=
create_optimizer
(
args
)
opt
.
minimize
(
avg_cost
)
place
=
fluid
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
if
args
.
pretrained_model
:
def
if_exist
(
var
):
return
os
.
path
.
exists
(
os
.
path
.
join
(
args
.
pretrained_model
,
var
.
name
))
fluid
.
io
.
load_vars
(
exe
,
args
.
pretrained_model
,
predicate
=
if_exist
)
val_reader
=
paddle
.
batch
(
val_reader
,
batch_size
=
args
.
batch_size
)
train_reader
=
paddle
.
batch
(
train_reader
,
batch_size
=
args
.
batch_size
,
drop_last
=
True
)
train_feeder
=
feeder
=
fluid
.
DataFeeder
([
image
,
label
],
place
)
val_feeder
=
feeder
=
fluid
.
DataFeeder
(
[
image
,
label
],
place
,
program
=
val_program
)
def
test
(
epoch
,
program
):
batch_id
=
0
acc_top1_ns
=
[]
acc_top5_ns
=
[]
for
data
in
val_reader
():
start_time
=
time
.
time
()
acc_top1_n
,
acc_top5_n
=
exe
.
run
(
program
,
feed
=
train_feeder
.
feed
(
data
),
fetch_list
=
[
acc_top1
.
name
,
acc_top5
.
name
])
end_time
=
time
.
time
()
if
batch_id
%
args
.
log_period
==
0
:
_logger
.
info
(
"Eval epoch[{}] batch[{}] - acc_top1: {:.3f}; acc_top5: {:.3f}; time: {:.3f}"
.
format
(
epoch
,
batch_id
,
np
.
mean
(
acc_top1_n
),
np
.
mean
(
acc_top5_n
),
end_time
-
start_time
))
acc_top1_ns
.
append
(
np
.
mean
(
acc_top1_n
))
acc_top5_ns
.
append
(
np
.
mean
(
acc_top5_n
))
batch_id
+=
1
_logger
.
info
(
"Final eval epoch[{}] - acc_top1: {:.3f}; acc_top5: {:.3f}"
.
format
(
epoch
,
np
.
mean
(
np
.
array
(
acc_top1_ns
)),
np
.
mean
(
np
.
array
(
acc_top5_ns
))))
return
np
.
mean
(
np
.
array
(
acc_top1_ns
))
def
train
(
epoch
,
program
):
build_strategy
=
fluid
.
BuildStrategy
()
exec_strategy
=
fluid
.
ExecutionStrategy
()
train_program
=
fluid
.
compiler
.
CompiledProgram
(
program
).
with_data_parallel
(
loss_name
=
avg_cost
.
name
,
build_strategy
=
build_strategy
,
exec_strategy
=
exec_strategy
)
batch_id
=
0
for
data
in
train_reader
():
start_time
=
time
.
time
()
loss_n
,
acc_top1_n
,
acc_top5_n
=
exe
.
run
(
train_program
,
feed
=
train_feeder
.
feed
(
data
),
fetch_list
=
[
avg_cost
.
name
,
acc_top1
.
name
,
acc_top5
.
name
])
end_time
=
time
.
time
()
loss_n
=
np
.
mean
(
loss_n
)
acc_top1_n
=
np
.
mean
(
acc_top1_n
)
acc_top5_n
=
np
.
mean
(
acc_top5_n
)
if
batch_id
%
args
.
log_period
==
0
:
_logger
.
info
(
"epoch[{}]-batch[{}] - loss: {:.3f}; acc_top1: {:.3f}; acc_top5: {:.3f}; time: {:.3f}"
.
format
(
epoch
,
batch_id
,
loss_n
,
acc_top1_n
,
acc_top5_n
,
end_time
-
start_time
))
batch_id
+=
1
params
=
[]
for
param
in
fluid
.
default_main_program
().
global_block
().
all_parameters
():
if
"_sep_weights"
in
param
.
name
:
params
.
append
(
param
.
name
)
def
eval_func
(
program
):
return
test
(
0
,
program
)
if
args
.
data
==
"mnist"
:
train
(
0
,
fluid
.
default_main_program
())
pruner
=
SensitivePruner
(
place
,
eval_func
,
checkpoints
=
args
.
checkpoints
)
pruned_program
,
pruned_val_program
,
iter
=
pruner
.
restore
()
if
pruned_program
is
None
:
pruned_program
=
fluid
.
default_main_program
()
if
pruned_val_program
is
None
:
pruned_val_program
=
val_program
base_flops
=
flops
(
val_program
)
start
=
iter
end
=
args
.
prune_steps
for
iter
in
range
(
start
,
end
):
pruned_program
,
pruned_val_program
=
pruner
.
greedy_prune
(
pruned_program
,
pruned_val_program
,
params
,
0.1
,
topk
=
1
)
current_flops
=
flops
(
pruned_val_program
)
print
(
"iter:{}; pruned FLOPS: {}"
.
format
(
iter
,
float
(
base_flops
-
current_flops
)
/
base_flops
))
acc
=
None
for
i
in
range
(
args
.
retrain_epoch
):
train
(
i
,
pruned_program
)
acc
=
test
(
i
,
pruned_val_program
)
print
(
"iter:{}; pruned FLOPS: {}; acc: {}"
.
format
(
iter
,
float
(
base_flops
-
current_flops
)
/
base_flops
),
acc
)
pruner
.
save_checkpoint
(
pruned_program
,
pruned_val_program
)
def
main
():
args
=
parser
.
parse_args
()
print_arguments
(
args
)
compress
(
args
)
if
__name__
==
'__main__'
:
main
()
demo/sensitive_prune/
train
.py
→
demo/sensitive_prune/
prune
.py
浏览文件 @
94aafddc
文件已移动
paddleslim/prune/sensitive.py
浏览文件 @
94aafddc
...
...
@@ -32,7 +32,8 @@ def sensitivity(program,
param_names
,
eval_func
,
sensitivities_file
=
None
,
step_size
=
0.2
):
step_size
=
0.2
,
max_pruned_times
=
None
):
scope
=
fluid
.
global_scope
()
graph
=
GraphWrapper
(
program
)
sensitivities
=
_load_sensitivities
(
sensitivities_file
)
...
...
@@ -48,7 +49,10 @@ def sensitivity(program,
baseline
=
None
for
name
in
sensitivities
:
ratio
=
step_size
pruned_times
=
0
while
ratio
<
1
:
if
max_pruned_times
is
not
None
and
pruned_times
>=
max_pruned_times
:
break
ratio
=
round
(
ratio
,
2
)
if
ratio
in
sensitivities
[
name
][
'pruned_percent'
]:
_logger
.
debug
(
'{}, {} has computed.'
.
format
(
name
,
ratio
))
...
...
@@ -81,6 +85,7 @@ def sensitivity(program,
param_t
=
scope
.
find_var
(
param_name
).
get_tensor
()
param_t
.
set
(
param_backup
[
param_name
],
place
)
ratio
+=
step_size
pruned_times
+=
1
return
sensitivities
...
...
paddleslim/prune/sensitive_pruner.py
浏览文件 @
94aafddc
...
...
@@ -73,7 +73,6 @@ class SensitivePruner(object):
program_desc_str
=
f
.
read
()
main_program
=
fluid
.
Program
.
parse_from_string
(
program_desc_str
)
print
main_program
with
open
(
latest_ck_path
+
"/eval_program"
,
"rb"
)
as
f
:
program_desc_str
=
f
.
read
()
...
...
@@ -87,6 +86,47 @@ class SensitivePruner(object):
print
(
"flops of eval program: {}"
.
format
(
flops
(
eval_program
)))
return
main_program
,
eval_program
,
self
.
_iter
def
greedy_prune
(
self
,
train_program
,
eval_program
,
params
,
pruned_ratio
,
topk
=
1
):
sensitivities_file
=
"greedy_sensitivities_iter{}.data"
.
format
(
self
.
_iter
)
with
fluid
.
scope_guard
(
self
.
_scope
):
sensitivities
=
sensitivity
(
eval_program
,
self
.
_place
,
params
,
self
.
_eval_func
,
sensitivities_file
=
sensitivities_file
,
step_size
=
pruned_ratio
,
max_pruned_times
=
1
)
print
sensitivities
params
,
ratios
=
self
.
_greedy_ratio_by_sensitive
(
sensitivities
,
topk
)
_logger
.
info
(
"Pruning: {} by {}"
.
format
(
params
,
ratios
))
pruned_program
=
self
.
_pruner
.
prune
(
train_program
,
self
.
_scope
,
params
,
ratios
,
place
=
self
.
_place
,
only_graph
=
False
)
pruned_val_program
=
None
if
eval_program
is
not
None
:
pruned_val_program
=
self
.
_pruner
.
prune
(
eval_program
,
self
.
_scope
,
params
,
ratios
,
place
=
self
.
_place
,
only_graph
=
True
)
self
.
_iter
+=
1
return
pruned_program
,
pruned_val_program
def
prune
(
self
,
train_program
,
eval_program
,
params
,
pruned_flops
):
"""
Pruning parameters of training and evaluation network by sensitivities in current step.
...
...
@@ -131,6 +171,16 @@ class SensitivePruner(object):
self
.
_iter
+=
1
return
pruned_program
,
pruned_val_program
def
_greedy_ratio_by_sensitive
(
self
,
sensitivities
,
topk
=
1
):
losses
=
{}
percents
=
{}
for
param
in
sensitivities
:
losses
[
param
]
=
sensitivities
[
param
][
'loss'
][
0
]
percents
[
param
]
=
sensitivities
[
param
][
'pruned_percent'
][
0
]
topk_parms
=
sorted
(
losses
,
key
=
losses
.
__getitem__
)[:
topk
]
topk_percents
=
[
percents
[
param
]
for
param
in
topk_parms
]
return
topk_parms
,
topk_percents
def
_get_ratios_by_sensitive
(
self
,
sensitivities
,
pruned_flops
,
eval_program
):
"""
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录