Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
c4e11733
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
大约 1 年 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c4e11733
编写于
2月 05, 2020
作者:
L
Liufang Sang
提交者:
GitHub
2月 06, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add unittest for quantization api (#85)
上级
66f2bc77
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
328 addition
and
7 deletion
+328
-7
demo/models/mobilenet.py
demo/models/mobilenet.py
+8
-7
tests/test_quant_aware.py
tests/test_quant_aware.py
+172
-0
tests/test_quant_embedding.py
tests/test_quant_embedding.py
+32
-0
tests/test_quant_post.py
tests/test_quant_post.py
+116
-0
未找到文件。
demo/models/mobilenet.py
浏览文件 @
c4e11733
...
...
@@ -127,13 +127,14 @@ class MobileNet():
pool_stride
=
1
,
pool_type
=
'avg'
,
global_pooling
=
True
)
output
=
fluid
.
layers
.
fc
(
input
=
input
,
size
=
class_dim
,
act
=
'softmax'
,
param_attr
=
ParamAttr
(
initializer
=
MSRA
(),
name
=
"fc7_weights"
),
bias_attr
=
ParamAttr
(
name
=
"fc7_offset"
))
with
fluid
.
name_scope
(
'last_fc'
):
output
=
fluid
.
layers
.
fc
(
input
=
input
,
size
=
class_dim
,
act
=
'softmax'
,
param_attr
=
ParamAttr
(
initializer
=
MSRA
(),
name
=
"fc7_weights"
),
bias_attr
=
ParamAttr
(
name
=
"fc7_offset"
))
return
output
...
...
tests/test_quant_aware.py
0 → 100644
浏览文件 @
c4e11733
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
sys
.
path
.
append
(
"../"
)
import
unittest
import
paddle
import
paddle.fluid
as
fluid
from
paddleslim.quant
import
quant_aware
,
convert
sys
.
path
.
append
(
"../demo"
)
from
models
import
MobileNet
from
layers
import
conv_bn_layer
import
paddle.dataset.mnist
as
reader
from
paddle.fluid.framework
import
IrGraph
from
paddle.fluid
import
core
import
numpy
as
np
class
TestQuantAwareCase1
(
unittest
.
TestCase
):
def
get_model
(
self
):
image
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
1
,
28
,
28
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
model
=
MobileNet
()
out
=
model
.
net
(
input
=
image
,
class_dim
=
10
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
out
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
startup_prog
=
fluid
.
default_startup_program
()
train_prog
=
fluid
.
default_main_program
()
return
startup_prog
,
train_prog
def
get_op_number
(
self
,
prog
):
graph
=
IrGraph
(
core
.
Graph
(
prog
.
desc
),
for_test
=
False
)
quant_op_nums
=
0
op_nums
=
0
for
op
in
graph
.
all_op_nodes
():
if
op
.
name
()
in
[
'conv2d'
,
'depthwise_conv2d'
,
'mul'
]:
op_nums
+=
1
elif
'fake_'
in
op
.
name
():
quant_op_nums
+=
1
return
op_nums
,
quant_op_nums
def
test_quant_op
(
self
):
startup_prog
,
train_prog
=
self
.
get_model
()
place
=
fluid
.
CUDAPlace
(
0
)
if
fluid
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
config_1
=
{
'weight_quantize_type'
:
'channel_wise_abs_max'
,
'activation_quantize_type'
:
'moving_average_abs_max'
,
'quantize_op_types'
:
[
'depthwise_conv2d'
,
'mul'
,
'conv2d'
],
}
quant_prog_1
=
quant_aware
(
train_prog
,
place
,
config
=
config_1
,
for_test
=
True
)
op_nums_1
,
quant_op_nums_1
=
self
.
get_op_number
(
quant_prog_1
)
convert_prog_1
=
convert
(
quant_prog_1
,
place
,
config
=
config_1
)
convert_op_nums_1
,
convert_quant_op_nums_1
=
self
.
get_op_number
(
convert_prog_1
)
config_1
[
'not_quant_pattern'
]
=
[
'last_fc'
]
quant_prog_2
=
quant_aware
(
train_prog
,
place
,
config
=
config_1
,
for_test
=
True
)
op_nums_2
,
quant_op_nums_2
=
self
.
get_op_number
(
quant_prog_2
)
convert_prog_2
=
convert
(
quant_prog_2
,
place
,
config
=
config_1
)
convert_op_nums_2
,
convert_quant_op_nums_2
=
self
.
get_op_number
(
convert_prog_2
)
self
.
assertTrue
(
op_nums_1
==
op_nums_2
)
# test quant_aware op numbers
self
.
assertTrue
(
op_nums_1
*
4
==
quant_op_nums_1
)
# test convert op numbers
self
.
assertTrue
(
convert_op_nums_1
*
2
==
convert_quant_op_nums_1
)
# test skip_quant
self
.
assertTrue
(
quant_op_nums_1
-
4
==
quant_op_nums_2
)
self
.
assertTrue
(
convert_quant_op_nums_1
-
2
==
convert_quant_op_nums_2
)
class
TestQuantAwareCase2
(
unittest
.
TestCase
):
def
test_accuracy
(
self
):
image
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
1
,
28
,
28
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
model
=
MobileNet
()
out
=
model
.
net
(
input
=
image
,
class_dim
=
10
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
out
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc_top1
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
1
)
acc_top5
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
5
)
optimizer
=
fluid
.
optimizer
.
Momentum
(
momentum
=
0.9
,
learning_rate
=
0.01
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
4e-5
))
optimizer
.
minimize
(
avg_cost
)
main_prog
=
fluid
.
default_main_program
()
val_prog
=
main_prog
.
clone
(
for_test
=
True
)
place
=
fluid
.
CUDAPlace
(
0
)
if
fluid
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
feeder
=
fluid
.
DataFeeder
([
image
,
label
],
place
,
program
=
main_prog
)
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
64
)
eval_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
64
)
def
train
(
program
):
iter
=
0
for
data
in
train_reader
():
cost
,
top1
,
top5
=
exe
.
run
(
program
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_cost
,
acc_top1
,
acc_top5
])
iter
+=
1
if
iter
%
100
==
0
:
print
(
'train iter={}, avg loss {}, acc_top1 {}, acc_top5 {}'
.
format
(
iter
,
cost
,
top1
,
top5
))
def
test
(
program
):
iter
=
0
result
=
[[],
[],
[]]
for
data
in
train_reader
():
cost
,
top1
,
top5
=
exe
.
run
(
program
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_cost
,
acc_top1
,
acc_top5
])
iter
+=
1
if
iter
%
100
==
0
:
print
(
'eval iter={}, avg loss {}, acc_top1 {}, acc_top5 {}'
.
format
(
iter
,
cost
,
top1
,
top5
))
result
[
0
].
append
(
cost
)
result
[
1
].
append
(
top1
)
result
[
2
].
append
(
top5
)
print
(
' avg loss {}, acc_top1 {}, acc_top5 {}'
.
format
(
np
.
mean
(
result
[
0
]),
np
.
mean
(
result
[
1
]),
np
.
mean
(
result
[
2
])))
return
np
.
mean
(
result
[
1
]),
np
.
mean
(
result
[
2
])
train
(
main_prog
)
top1_1
,
top5_1
=
test
(
main_prog
)
config
=
{
'weight_quantize_type'
:
'channel_wise_abs_max'
,
'activation_quantize_type'
:
'moving_average_abs_max'
,
'quantize_op_types'
:
[
'depthwise_conv2d'
,
'mul'
,
'conv2d'
],
}
quant_train_prog
=
quant_aware
(
main_prog
,
place
,
config
,
for_test
=
False
)
quant_eval_prog
=
quant_aware
(
val_prog
,
place
,
config
,
for_test
=
True
)
train
(
quant_train_prog
)
quant_eval_prog
=
convert
(
quant_eval_prog
,
place
,
config
)
top1_2
,
top5_2
=
test
(
quant_eval_prog
)
# values before quantization and after quantization should be close
print
(
"before quantization: top1: {}, top5: {}"
.
format
(
top1_1
,
top5_1
))
print
(
"after quantization: top1: {}, top5: {}"
.
format
(
top1_2
,
top5_2
))
if
__name__
==
'__main__'
:
unittest
.
main
()
tests/test_quant_embedding.py
0 → 100644
浏览文件 @
c4e11733
import
paddle.fluid
as
fluid
import
paddleslim.quant
as
quant
import
unittest
class
TestQuantEmbedding
(
unittest
.
TestCase
):
def
test_quant_embedding
(
self
):
train_program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
train_program
):
input_word
=
fluid
.
data
(
name
=
"input_word"
,
shape
=
[
None
,
1
],
dtype
=
'int64'
)
input_emb
=
fluid
.
embedding
(
input
=
input_word
,
is_sparse
=
False
,
size
=
[
100
,
128
],
param_attr
=
fluid
.
ParamAttr
(
name
=
'emb'
,
initializer
=
fluid
.
initializer
.
Uniform
(
-
0.005
,
0.005
)))
infer_program
=
train_program
.
clone
(
for_test
=
True
)
use_gpu
=
True
place
=
fluid
.
CUDAPlace
(
0
)
if
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
config
=
{
'params_name'
:
'emb'
,
'quantize_type'
:
'abs_max'
}
quant_program
=
quant
.
quant_embedding
(
infer_program
,
place
,
config
)
if
__name__
==
'__main__'
:
unittest
.
main
()
tests/test_quant_post.py
0 → 100644
浏览文件 @
c4e11733
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
sys
.
path
.
append
(
"../"
)
import
unittest
import
paddle
import
paddle.fluid
as
fluid
from
paddleslim.quant
import
quant_post
sys
.
path
.
append
(
"../demo"
)
from
models
import
MobileNet
from
layers
import
conv_bn_layer
import
paddle.dataset.mnist
as
reader
from
paddle.fluid.framework
import
IrGraph
from
paddle.fluid
import
core
import
numpy
as
np
class
TestQuantAwareCase1
(
unittest
.
TestCase
):
def
test_accuracy
(
self
):
image
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
1
,
28
,
28
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
model
=
MobileNet
()
out
=
model
.
net
(
input
=
image
,
class_dim
=
10
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
out
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc_top1
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
1
)
acc_top5
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
5
)
optimizer
=
fluid
.
optimizer
.
Momentum
(
momentum
=
0.9
,
learning_rate
=
0.01
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
4e-5
))
optimizer
.
minimize
(
avg_cost
)
main_prog
=
fluid
.
default_main_program
()
val_prog
=
main_prog
.
clone
(
for_test
=
True
)
place
=
fluid
.
CUDAPlace
(
0
)
if
fluid
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
feeder
=
fluid
.
DataFeeder
([
image
,
label
],
place
,
program
=
main_prog
)
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
64
)
eval_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
64
)
def
train
(
program
):
iter
=
0
for
data
in
train_reader
():
cost
,
top1
,
top5
=
exe
.
run
(
program
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_cost
,
acc_top1
,
acc_top5
])
iter
+=
1
if
iter
%
100
==
0
:
print
(
'train iter={}, avg loss {}, acc_top1 {}, acc_top5 {}'
.
format
(
iter
,
cost
,
top1
,
top5
))
def
test
(
program
,
outputs
=
[
avg_cost
,
acc_top1
,
acc_top5
]):
iter
=
0
result
=
[[],
[],
[]]
for
data
in
train_reader
():
cost
,
top1
,
top5
=
exe
.
run
(
program
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
outputs
)
iter
+=
1
if
iter
%
100
==
0
:
print
(
'eval iter={}, avg loss {}, acc_top1 {}, acc_top5 {}'
.
format
(
iter
,
cost
,
top1
,
top5
))
result
[
0
].
append
(
cost
)
result
[
1
].
append
(
top1
)
result
[
2
].
append
(
top5
)
print
(
' avg loss {}, acc_top1 {}, acc_top5 {}'
.
format
(
np
.
mean
(
result
[
0
]),
np
.
mean
(
result
[
1
]),
np
.
mean
(
result
[
2
])))
return
np
.
mean
(
result
[
1
]),
np
.
mean
(
result
[
2
])
train
(
main_prog
)
top1_1
,
top5_1
=
test
(
val_prog
)
fluid
.
io
.
save_inference_model
(
dirname
=
'./test_quant_post'
,
feeded_var_names
=
[
image
.
name
,
label
.
name
],
target_vars
=
[
avg_cost
,
acc_top1
,
acc_top5
],
main_program
=
val_prog
,
executor
=
exe
,
model_filename
=
'model'
,
params_filename
=
'params'
)
quant_post
(
exe
,
'./test_quant_post'
,
'./test_quant_post_inference'
,
paddle
.
dataset
.
mnist
.
test
(),
model_filename
=
'model'
,
params_filename
=
'params'
,
batch_nums
=
10
)
quant_post_prog
,
feed_target_names
,
fetch_targets
=
fluid
.
io
.
load_inference_model
(
dirname
=
'./test_quant_post_inference'
,
executor
=
exe
)
top1_2
,
top5_2
=
test
(
quant_post_prog
,
fetch_targets
)
print
(
"before quantization: top1: {}, top5: {}"
.
format
(
top1_1
,
top5_1
))
print
(
"after quantization: top1: {}, top5: {}"
.
format
(
top1_2
,
top5_2
))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录