未验证 提交 66f2bc77 编写于 作者: B Bai Yifan 提交者: GitHub

Add unittest for knwoledge distillation api (#84)

上级 777b4e0b
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
sys.path.append("../")
import unittest
import paddle.fluid as fluid
from paddleslim.dist import merge, fsp_loss
from layers import conv_bn_layer
class TestMerge(unittest.TestCase):
def test_merge(self):
student_main = fluid.Program()
student_startup = fluid.Program()
with fluid.program_guard(student_main, student_startup):
input = fluid.data(name="image", shape=[None, 3, 224, 224])
conv1 = conv_bn_layer(input, 8, 3, "conv1")
conv2 = conv_bn_layer(conv1, 8, 3, "conv2")
student_predict = conv1 + conv2
teacher_main = fluid.Program()
teacher_startup = fluid.Program()
with fluid.program_guard(teacher_main, teacher_startup):
input = fluid.data(name="image", shape=[None, 3, 224, 224])
conv1 = conv_bn_layer(input, 8, 3, "conv1")
conv2 = conv_bn_layer(conv1, 8, 3, "conv2")
sum1 = conv1 + conv2
conv3 = conv_bn_layer(sum1, 8, 3, "conv3")
conv4 = conv_bn_layer(conv3, 8, 3, "conv4")
sum2 = conv4 + sum1
conv5 = conv_bn_layer(sum2, 8, 3, "conv5")
teacher_predict = conv_bn_layer(conv5, 8, 3, "conv6")
place = fluid.CPUPlace()
data_name_map = {'image': 'image'}
merge(teacher_main, student_main, data_name_map, place)
merged_ops = []
for block in student_main.blocks:
for op in block.ops:
merged_ops.append(op.type)
with fluid.program_guard(student_main):
distill_loss = fsp_loss('teacher_conv5_bn_output.tmp_2',
'teacher_conv6_bn_output.tmp_2',
'conv1_bn_output.tmp_2',
'conv2_bn_output.tmp_2', student_main)
loss_ops = []
for block in student_main.blocks:
for op in block.ops:
loss_ops.append(op.type)
self.assertTrue(set(merged_ops).difference(set(loss_ops)) == set())
self.assertTrue(
set(loss_ops).difference(set(merged_ops)) ==
{'elementwise_sub', 'reduce_mean', 'square', 'fsp'})
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
sys.path.append("../")
import unittest
import paddle.fluid as fluid
from paddleslim.dist import merge, l2_loss
from layers import conv_bn_layer
class TestMerge(unittest.TestCase):
def test_merge(self):
student_main = fluid.Program()
student_startup = fluid.Program()
with fluid.program_guard(student_main, student_startup):
input = fluid.data(name="image", shape=[None, 3, 224, 224])
conv1 = conv_bn_layer(input, 8, 3, "conv1")
conv2 = conv_bn_layer(conv1, 8, 3, "conv2")
student_predict = conv1 + conv2
teacher_main = fluid.Program()
teacher_startup = fluid.Program()
with fluid.program_guard(teacher_main, teacher_startup):
input = fluid.data(name="image", shape=[None, 3, 224, 224])
conv1 = conv_bn_layer(input, 8, 3, "conv1")
conv2 = conv_bn_layer(conv1, 8, 3, "conv2")
sum1 = conv1 + conv2
conv3 = conv_bn_layer(sum1, 8, 3, "conv3")
conv4 = conv_bn_layer(conv3, 8, 3, "conv4")
sum2 = conv4 + sum1
conv5 = conv_bn_layer(sum2, 8, 3, "conv5")
teacher_predict = conv_bn_layer(conv5, 8, 3, "conv6")
place = fluid.CPUPlace()
data_name_map = {'image': 'image'}
merge(teacher_main, student_main, data_name_map, place)
merged_ops = []
for block in student_main.blocks:
for op in block.ops:
merged_ops.append(op.type)
with fluid.program_guard(student_main):
distill_loss = l2_loss('teacher_conv6_bn_output.tmp_2',
'conv2_bn_output.tmp_2', student_main)
loss_ops = []
for block in student_main.blocks:
for op in block.ops:
loss_ops.append(op.type)
self.assertTrue(set(merged_ops).difference(set(loss_ops)) == set())
self.assertTrue(
set(loss_ops).difference(set(merged_ops)) ==
{'reduce_mean', 'square', 'elementwise_sub'})
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
sys.path.append("../")
import unittest
import paddle.fluid as fluid
from paddleslim.dist import merge, loss
from layers import conv_bn_layer
class TestMerge(unittest.TestCase):
def test_merge(self):
student_main = fluid.Program()
student_startup = fluid.Program()
with fluid.program_guard(student_main, student_startup):
input = fluid.data(name="image", shape=[None, 3, 224, 224])
conv1 = conv_bn_layer(input, 8, 3, "conv1")
conv2 = conv_bn_layer(conv1, 8, 3, "conv2")
student_predict = conv1 + conv2
teacher_main = fluid.Program()
teacher_startup = fluid.Program()
with fluid.program_guard(teacher_main, teacher_startup):
input = fluid.data(name="image", shape=[None, 3, 224, 224])
conv1 = conv_bn_layer(input, 8, 3, "conv1")
conv2 = conv_bn_layer(conv1, 8, 3, "conv2")
sum1 = conv1 + conv2
conv3 = conv_bn_layer(sum1, 8, 3, "conv3")
conv4 = conv_bn_layer(conv3, 8, 3, "conv4")
sum2 = conv4 + sum1
conv5 = conv_bn_layer(sum2, 8, 3, "conv5")
teacher_predict = conv_bn_layer(conv5, 8, 3, "conv6")
place = fluid.CPUPlace()
data_name_map = {'image': 'image'}
merge(teacher_main, student_main, data_name_map, place)
merged_ops = []
for block in student_main.blocks:
for op in block.ops:
merged_ops.append(op.type)
def adaptation_loss(t_var, s_var):
teacher_channel = t_var.shape[1]
s_hint = fluid.layers.conv2d(s_var, teacher_channel, 1)
hint_loss = fluid.layers.reduce_mean(
fluid.layers.square(s_hint - t_var))
return hint_loss
with fluid.program_guard(student_main):
distill_loss = loss(
adaptation_loss,
student_main,
t_var='teacher_conv6_bn_output.tmp_2',
s_var='conv2_bn_output.tmp_2')
loss_ops = []
for block in student_main.blocks:
for op in block.ops:
loss_ops.append(op.type)
self.assertTrue(set(merged_ops).difference(set(loss_ops)) == set())
self.assertTrue(
set(loss_ops).difference(set(merged_ops)) ==
{'reduce_mean', 'elementwise_sub', 'square'})
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
sys.path.append("../")
import unittest
import paddle.fluid as fluid
from paddleslim.dist import merge
from layers import conv_bn_layer
class TestMerge(unittest.TestCase):
def test_merge(self):
student_main = fluid.Program()
student_startup = fluid.Program()
with fluid.program_guard(student_main, student_startup):
input = fluid.data(name="image", shape=[None, 3, 224, 224])
conv1 = conv_bn_layer(input, 8, 3, "conv1")
conv2 = conv_bn_layer(conv1, 8, 3, "conv2")
student_predict = conv1 + conv2
student_ops = []
for block in student_main.blocks:
for op in block.ops:
student_ops.append(op)
teacher_main = fluid.Program()
teacher_startup = fluid.Program()
with fluid.program_guard(teacher_main, teacher_startup):
input = fluid.data(name="image", shape=[None, 3, 224, 224])
conv1 = conv_bn_layer(input, 8, 3, "conv1")
conv2 = conv_bn_layer(conv1, 8, 3, "conv2")
sum1 = conv1 + conv2
conv3 = conv_bn_layer(sum1, 8, 3, "conv3")
conv4 = conv_bn_layer(conv3, 8, 3, "conv4")
sum2 = conv4 + sum1
conv5 = conv_bn_layer(sum2, 8, 3, "conv5")
teacher_predict = conv_bn_layer(conv5, 8, 3, "conv6")
teacher_ops = []
for block in teacher_main.blocks:
for op in block.ops:
teacher_ops.append(op)
place = fluid.CPUPlace()
data_name_map = {'image': 'image'}
merge(teacher_main, student_main, data_name_map, place)
merged_ops = []
for block in student_main.blocks:
for op in block.ops:
merged_ops.append(op)
self.assertTrue(len(student_ops) + len(teacher_ops) == len(merged_ops))
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
sys.path.append("../")
import unittest
import paddle.fluid as fluid
from paddleslim.dist import merge, soft_label_loss
from layers import conv_bn_layer
class TestMerge(unittest.TestCase):
def test_merge(self):
student_main = fluid.Program()
student_startup = fluid.Program()
with fluid.program_guard(student_main, student_startup):
input = fluid.data(name="image", shape=[None, 3, 224, 224])
conv1 = conv_bn_layer(input, 8, 3, "conv1")
conv2 = conv_bn_layer(conv1, 8, 3, "conv2")
student_predict = conv1 + conv2
teacher_main = fluid.Program()
teacher_startup = fluid.Program()
with fluid.program_guard(teacher_main, teacher_startup):
input = fluid.data(name="image", shape=[None, 3, 224, 224])
conv1 = conv_bn_layer(input, 8, 3, "conv1")
conv2 = conv_bn_layer(conv1, 8, 3, "conv2")
sum1 = conv1 + conv2
conv3 = conv_bn_layer(sum1, 8, 3, "conv3")
conv4 = conv_bn_layer(conv3, 8, 3, "conv4")
sum2 = conv4 + sum1
conv5 = conv_bn_layer(sum2, 8, 3, "conv5")
teacher_predict = conv_bn_layer(conv5, 8, 3, "conv6")
place = fluid.CPUPlace()
data_name_map = {'image': 'image'}
merge(teacher_main, student_main, data_name_map, place)
merged_ops = []
for block in student_main.blocks:
for op in block.ops:
merged_ops.append(op.type)
with fluid.program_guard(student_main):
distill_loss = soft_label_loss('teacher_conv6_bn_output.tmp_2',
'conv2_bn_output.tmp_2',
student_main)
loss_ops = []
for block in student_main.blocks:
for op in block.ops:
loss_ops.append(op.type)
self.assertTrue(set(merged_ops).difference(set(loss_ops)) == set())
self.assertTrue(
set(loss_ops).difference(set(merged_ops)) ==
{'cross_entropy', 'softmax', 'reduce_mean', 'scale'})
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册