Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
2f7b54da
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
1 年多 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2f7b54da
编写于
9月 06, 2022
作者:
Z
zhouzj
提交者:
GitHub
9月 06, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add demo for evaling on paddle-inference. (#1412)
上级
d3ba08b5
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
116 addition
and
21 deletion
+116
-21
example/auto_compression/semantic_segmentation/README.md
example/auto_compression/semantic_segmentation/README.md
+12
-0
example/auto_compression/semantic_segmentation/infer.py
example/auto_compression/semantic_segmentation/infer.py
+104
-21
未找到文件。
example/auto_compression/semantic_segmentation/README.md
浏览文件 @
2f7b54da
...
...
@@ -244,6 +244,18 @@ python infer.py \
--precision "int8"
```
执行以下命令,使用Paddle Inference在相应数据集上测试精度:
```
export CUDA_VISIBLE_DEVICES=0
python infer.py \
--model_path "./pp_humanseg_qat/model.pdmodel" \
--params_path "./pp_humanseg_qat/model.pdiparams" \
--dataset_config configs/dataset/humanseg_dataset.yaml \
--use_trt True \
--precision "int8"
```
<table><tbody>
<tr>
...
...
example/auto_compression/semantic_segmentation/infer.py
浏览文件 @
2f7b54da
...
...
@@ -12,19 +12,17 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
cv2
import
numpy
as
np
import
argparse
import
time
import
PIL
from
PIL
import
Image
from
tqdm
import
tqdm
import
paddle
import
paddleseg.transforms
as
T
from
paddleseg.cvlibs
import
Config
as
PaddleSegDataConfig
from
paddleseg.core.infer
import
reverse_transform
from
paddleseg.utils
import
get_image_list
from
paddleseg.utils.visualize
import
get_pseudo_color_map
from
paddleseg.utils
import
metrics
from
paddle.inference
import
create_predictor
,
PrecisionType
from
paddle.inference
import
Config
as
PredictConfig
...
...
@@ -38,10 +36,9 @@ def _transforms(dataset):
elif
dataset
==
"cityscape"
:
transforms
.
append
(
T
.
Normalize
())
return
transforms
return
T
.
Compose
(
transforms
)
def
auto_tune_trt
(
args
):
def
auto_tune_trt
(
args
,
data
):
auto_tuned_shape_file
=
"./auto_tuning_shape"
pred_cfg
=
PredictConfig
(
args
.
model_path
,
args
.
params_path
)
pred_cfg
.
enable_use_gpu
(
100
,
0
)
...
...
@@ -49,18 +46,13 @@ def auto_tune_trt(args):
predictor
=
create_predictor
(
pred_cfg
)
input_names
=
predictor
.
get_input_names
()
input_handle
=
predictor
.
get_input_handle
(
input_names
[
0
])
transforms
=
_transforms
(
args
.
dataset
)
transform
=
T
.
Compose
(
transforms
)
img
=
cv2
.
imread
(
args
.
image_file
).
astype
(
'float32'
)
data
,
_
=
transform
(
img
)
data
=
np
.
array
(
data
)[
np
.
newaxis
,
:]
input_handle
.
reshape
(
data
.
shape
)
input_handle
.
copy_from_cpu
(
data
)
predictor
.
run
()
return
auto_tuned_shape_file
def
load_predictor
(
args
):
def
load_predictor
(
args
,
data
):
pred_cfg
=
PredictConfig
(
args
.
model_path
,
args
.
params_path
)
pred_cfg
.
disable_glog_info
()
pred_cfg
.
enable_memory_optim
()
...
...
@@ -70,7 +62,7 @@ def load_predictor(args):
if
args
.
use_trt
:
# To collect the dynamic shapes of inputs for TensorRT engine
auto_tuned_shape_file
=
auto_tune_trt
(
args
)
auto_tuned_shape_file
=
auto_tune_trt
(
args
,
data
)
precision_map
=
{
"fp16"
:
PrecisionType
.
Half
,
"fp32"
:
PrecisionType
.
Float32
,
...
...
@@ -90,7 +82,7 @@ def load_predictor(args):
return
predictor
def
predict_image
(
args
,
predictor
):
def
predict_image
(
args
):
transforms
=
_transforms
(
args
.
dataset
)
transform
=
T
.
Compose
(
transforms
)
...
...
@@ -100,7 +92,10 @@ def predict_image(args, predictor):
data
,
_
=
transform
(
im
)
data
=
np
.
array
(
data
)[
np
.
newaxis
,
:]
# Step2: Inference
# Step2: Prepare prdictor
predictor
=
load_predictor
(
args
,
data
)
# Step3: Inference
input_names
=
predictor
.
get_input_names
()
input_handle
=
predictor
.
get_input_handle
(
input_names
[
0
])
output_names
=
predictor
.
get_output_names
()
...
...
@@ -123,26 +118,107 @@ def predict_image(args, predictor):
avg_time
=
float
(
total_time
)
/
repeats
print
(
f
"Average inference time:
\033
[91m
{
round
(
avg_time
*
1000
,
2
)
}
ms
\033
[0m"
)
# Step
3
: Post process
# Step
4
: Post process
if
args
.
dataset
==
"human"
:
results
=
reverse_transform
(
paddle
.
to_tensor
(
results
),
im
.
shape
,
transforms
,
mode
=
'bilinear'
)
results
=
np
.
argmax
(
results
,
axis
=
1
)
result
=
get_pseudo_color_map
(
results
[
0
])
# Step
4
: Save result to file
# Step
5
: Save result to file
if
args
.
save_file
is
not
None
:
result
.
save
(
args
.
save_file
)
print
(
f
"Saved result to
\033
[91m
{
args
.
save_file
}
\033
[0m"
)
def
eval
(
args
):
# DataLoader need run on cpu
paddle
.
set_device
(
'cpu'
)
data_cfg
=
PaddleSegDataConfig
(
args
.
dataset_config
)
eval_dataset
=
data_cfg
.
val_dataset
batch_sampler
=
paddle
.
io
.
BatchSampler
(
eval_dataset
,
batch_size
=
1
,
shuffle
=
False
,
drop_last
=
False
)
loader
=
paddle
.
io
.
DataLoader
(
eval_dataset
,
batch_sampler
=
batch_sampler
,
num_workers
=
1
,
return_list
=
True
)
total_iters
=
len
(
loader
)
intersect_area_all
=
0
pred_area_all
=
0
label_area_all
=
0
print
(
"Start evaluating (total_samples: {}, total_iters: {})..."
.
format
(
len
(
eval_dataset
),
total_iters
))
init_predictor
=
False
for
(
image
,
label
)
in
tqdm
(
loader
):
label
=
np
.
array
(
label
).
astype
(
'int64'
)
ori_shape
=
np
.
array
(
label
).
shape
[
-
2
:]
data
=
np
.
array
(
image
)
if
not
init_predictor
:
predictor
=
load_predictor
(
args
,
data
)
init_predictor
=
True
input_names
=
predictor
.
get_input_names
()
input_handle
=
predictor
.
get_input_handle
(
input_names
[
0
])
input_handle
.
reshape
(
data
.
shape
)
input_handle
.
copy_from_cpu
(
data
)
predictor
.
run
()
output_names
=
predictor
.
get_output_names
()
output_handle
=
predictor
.
get_output_handle
(
output_names
[
0
])
results
=
output_handle
.
copy_to_cpu
()
logit
=
reverse_transform
(
paddle
.
to_tensor
(
results
),
ori_shape
,
eval_dataset
.
transforms
.
transforms
,
mode
=
'bilinear'
)
pred
=
paddle
.
to_tensor
(
logit
)
if
len
(
pred
.
shape
)
==
4
:
# for humanseg model whose prediction is distribution but not class id
pred
=
paddle
.
argmax
(
pred
,
axis
=
1
,
keepdim
=
True
,
dtype
=
'int32'
)
intersect_area
,
pred_area
,
label_area
=
metrics
.
calculate_area
(
pred
,
paddle
.
to_tensor
(
label
),
eval_dataset
.
num_classes
,
ignore_index
=
eval_dataset
.
ignore_index
)
intersect_area_all
=
intersect_area_all
+
intersect_area
pred_area_all
=
pred_area_all
+
pred_area
label_area_all
=
label_area_all
+
label_area
class_iou
,
miou
=
metrics
.
mean_iou
(
intersect_area_all
,
pred_area_all
,
label_area_all
)
class_acc
,
acc
=
metrics
.
accuracy
(
intersect_area_all
,
pred_area_all
)
kappa
=
metrics
.
kappa
(
intersect_area_all
,
pred_area_all
,
label_area_all
)
class_dice
,
mdice
=
metrics
.
dice
(
intersect_area_all
,
pred_area_all
,
label_area_all
)
infor
=
"[EVAL] #Images: {} mIoU: {:.4f} Acc: {:.4f} Kappa: {:.4f} Dice: {:.4f}"
.
format
(
len
(
eval_dataset
),
miou
,
acc
,
kappa
,
mdice
)
print
(
infor
)
if
__name__
==
'__main__'
:
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'--image_file'
,
type
=
str
,
help
=
"Image path to be processed."
)
'--image_file'
,
type
=
str
,
default
=
None
,
help
=
"Image path to be processed."
)
parser
.
add_argument
(
'--save_file'
,
type
=
str
,
help
=
"The path to save the processed image."
)
'--save_file'
,
type
=
str
,
default
=
None
,
help
=
"The path to save the processed image."
)
parser
.
add_argument
(
'--model_path'
,
type
=
str
,
help
=
"Inference model filepath."
)
parser
.
add_argument
(
...
...
@@ -153,6 +229,11 @@ if __name__ == '__main__':
default
=
"human"
,
choices
=
[
"human"
,
"cityscape"
],
help
=
"The type of given image which can be 'human' or 'cityscape'."
)
parser
.
add_argument
(
'--dataset_config'
,
type
=
str
,
default
=
None
,
help
=
"path of dataset config."
)
parser
.
add_argument
(
'--benchmark'
,
type
=
bool
,
...
...
@@ -178,5 +259,7 @@ if __name__ == '__main__':
help
=
"The precision of inference. It can be 'fp32', 'fp16' or 'int8'. Default is 'fp16'."
)
args
=
parser
.
parse_args
()
predictor
=
load_predictor
(
args
)
predict_image
(
args
,
predictor
)
if
args
.
image_file
:
predict_image
(
args
)
else
:
eval
(
args
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录