Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
d3ba08b5
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
1 年多 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d3ba08b5
编写于
9月 06, 2022
作者:
C
Chang Xu
提交者:
GitHub
9月 06, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add Mbv3 Demo in Full Quant (#1413)
上级
371fdc4e
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
784 addition
and
59 deletion
+784
-59
example/auto_compression/image_classification/infer.py
example/auto_compression/image_classification/infer.py
+1
-0
example/auto_compression/image_classification/run.py
example/auto_compression/image_classification/run.py
+38
-34
example/full_quantization/detection/run.py
example/full_quantization/detection/run.py
+29
-25
example/full_quantization/image_classification/README.md
example/full_quantization/image_classification/README.md
+106
-0
example/full_quantization/image_classification/configs/eval.yaml
.../full_quantization/image_classification/configs/eval.yaml
+7
-0
example/full_quantization/image_classification/configs/mobilenetv3_large_qat_dis.yaml
...age_classification/configs/mobilenetv3_large_qat_dis.yaml
+32
-0
example/full_quantization/image_classification/eval.py
example/full_quantization/image_classification/eval.py
+122
-0
example/full_quantization/image_classification/imagenet_reader.py
...full_quantization/image_classification/imagenet_reader.py
+245
-0
example/full_quantization/image_classification/run.py
example/full_quantization/image_classification/run.py
+204
-0
未找到文件。
example/auto_compression/image_classification/infer.py
浏览文件 @
d3ba08b5
...
...
@@ -218,6 +218,7 @@ class Predictor(object):
results
.
append
([
top_1
,
top_5
])
result
=
np
.
mean
(
np
.
array
(
results
),
axis
=
0
)
t
.
update
()
print
(
'Evaluation result: {}'
.
format
(
result
[
0
]))
...
...
example/auto_compression/image_classification/run.py
浏览文件 @
d3ba08b5
...
...
@@ -18,6 +18,7 @@ import argparse
import
functools
from
functools
import
partial
import
math
from
tqdm
import
tqdm
import
numpy
as
np
import
paddle
...
...
@@ -87,40 +88,43 @@ def eval_function(exe, compiled_test_program, test_feed_names, test_fetch_list):
resize_size
=
resize_size
)
results
=
[]
print
(
'Evaluating...'
)
for
batch_id
,
(
image
,
label
)
in
enumerate
(
val_loader
):
# top1_acc, top5_acc
if
len
(
test_feed_names
)
==
1
:
image
=
np
.
array
(
image
)
label
=
np
.
array
(
label
).
astype
(
'int64'
)
pred
=
exe
.
run
(
compiled_test_program
,
feed
=
{
test_feed_names
[
0
]:
image
},
fetch_list
=
test_fetch_list
)
pred
=
np
.
array
(
pred
[
0
])
label
=
np
.
array
(
label
)
sort_array
=
pred
.
argsort
(
axis
=
1
)
top_1_pred
=
sort_array
[:,
-
1
:][:,
::
-
1
]
top_1
=
np
.
mean
(
label
==
top_1_pred
)
top_5_pred
=
sort_array
[:,
-
5
:][:,
::
-
1
]
acc_num
=
0
for
i
in
range
(
len
(
label
)):
if
label
[
i
][
0
]
in
top_5_pred
[
i
]:
acc_num
+=
1
top_5
=
float
(
acc_num
)
/
len
(
label
)
results
.
append
([
top_1
,
top_5
])
else
:
# eval "eval model", which inputs are image and label, output is top1 and top5 accuracy
image
=
np
.
array
(
image
)
label
=
np
.
array
(
label
).
astype
(
'int64'
)
result
=
exe
.
run
(
compiled_test_program
,
feed
=
{
test_feed_names
[
0
]:
image
,
test_feed_names
[
1
]:
label
},
fetch_list
=
test_fetch_list
)
result
=
[
np
.
mean
(
r
)
for
r
in
result
]
results
.
append
(
result
)
if
batch_id
%
100
==
0
:
print
(
'Eval iter: '
,
batch_id
)
with
tqdm
(
total
=
len
(
val_loader
),
bar_format
=
'Evaluation stage, Run batch:|{bar}| {n_fmt}/{total_fmt}'
,
ncols
=
80
)
as
t
:
for
batch_id
,
(
image
,
label
)
in
enumerate
(
val_loader
):
# top1_acc, top5_acc
if
len
(
test_feed_names
)
==
1
:
image
=
np
.
array
(
image
)
label
=
np
.
array
(
label
).
astype
(
'int64'
)
pred
=
exe
.
run
(
compiled_test_program
,
feed
=
{
test_feed_names
[
0
]:
image
},
fetch_list
=
test_fetch_list
)
pred
=
np
.
array
(
pred
[
0
])
label
=
np
.
array
(
label
)
sort_array
=
pred
.
argsort
(
axis
=
1
)
top_1_pred
=
sort_array
[:,
-
1
:][:,
::
-
1
]
top_1
=
np
.
mean
(
label
==
top_1_pred
)
top_5_pred
=
sort_array
[:,
-
5
:][:,
::
-
1
]
acc_num
=
0
for
i
in
range
(
len
(
label
)):
if
label
[
i
][
0
]
in
top_5_pred
[
i
]:
acc_num
+=
1
top_5
=
float
(
acc_num
)
/
len
(
label
)
results
.
append
([
top_1
,
top_5
])
else
:
# eval "eval model", which inputs are image and label, output is top1 and top5 accuracy
image
=
np
.
array
(
image
)
label
=
np
.
array
(
label
).
astype
(
'int64'
)
result
=
exe
.
run
(
compiled_test_program
,
feed
=
{
test_feed_names
[
0
]:
image
,
test_feed_names
[
1
]:
label
},
fetch_list
=
test_fetch_list
)
result
=
[
np
.
mean
(
r
)
for
r
in
result
]
results
.
append
(
result
)
t
.
update
()
result
=
np
.
mean
(
np
.
array
(
results
),
axis
=
0
)
return
result
[
0
]
...
...
example/full_quantization/detection/run.py
浏览文件 @
d3ba08b5
...
...
@@ -17,6 +17,7 @@ import sys
import
numpy
as
np
import
argparse
import
paddle
from
tqdm
import
tqdm
from
ppdet.core.workspace
import
load_config
,
merge_config
from
ppdet.core.workspace
import
create
from
ppdet.metrics
import
COCOMetric
,
VOCMetric
,
KeyPointTopDownCOCOEval
...
...
@@ -78,31 +79,34 @@ def convert_numpy_data(data, metric):
def
eval_function
(
exe
,
compiled_test_program
,
test_feed_names
,
test_fetch_list
):
metric
=
global_config
[
'metric'
]
for
batch_id
,
data
in
enumerate
(
val_loader
):
data_all
=
convert_numpy_data
(
data
,
metric
)
data_input
=
{}
for
k
,
v
in
data
.
items
():
if
isinstance
(
global_config
[
'input_list'
],
list
):
if
k
in
test_feed_names
:
data_input
[
k
]
=
np
.
array
(
v
)
elif
isinstance
(
global_config
[
'input_list'
],
dict
):
if
k
in
global_config
[
'input_list'
].
keys
():
data_input
[
global_config
[
'input_list'
][
k
]]
=
np
.
array
(
v
)
outs
=
exe
.
run
(
compiled_test_program
,
feed
=
data_input
,
fetch_list
=
test_fetch_list
,
return_numpy
=
False
)
res
=
{}
for
out
in
outs
:
v
=
np
.
array
(
out
)
if
len
(
v
.
shape
)
>
1
:
res
[
'bbox'
]
=
v
else
:
res
[
'bbox_num'
]
=
v
metric
.
update
(
data_all
,
res
)
if
batch_id
%
100
==
0
:
print
(
'Eval iter:'
,
batch_id
)
with
tqdm
(
total
=
len
(
val_loader
),
bar_format
=
'Evaluation stage, Run batch:|{bar}| {n_fmt}/{total_fmt}'
,
ncols
=
80
)
as
t
:
for
batch_id
,
data
in
enumerate
(
val_loader
):
data_all
=
convert_numpy_data
(
data
,
metric
)
data_input
=
{}
for
k
,
v
in
data
.
items
():
if
isinstance
(
global_config
[
'input_list'
],
list
):
if
k
in
test_feed_names
:
data_input
[
k
]
=
np
.
array
(
v
)
elif
isinstance
(
global_config
[
'input_list'
],
dict
):
if
k
in
global_config
[
'input_list'
].
keys
():
data_input
[
global_config
[
'input_list'
][
k
]]
=
np
.
array
(
v
)
outs
=
exe
.
run
(
compiled_test_program
,
feed
=
data_input
,
fetch_list
=
test_fetch_list
,
return_numpy
=
False
)
res
=
{}
for
out
in
outs
:
v
=
np
.
array
(
out
)
if
len
(
v
.
shape
)
>
1
:
res
[
'bbox'
]
=
v
else
:
res
[
'bbox_num'
]
=
v
metric
.
update
(
data_all
,
res
)
t
.
update
()
metric
.
accumulate
()
metric
.
log
()
map_res
=
metric
.
get_results
()
...
...
example/full_quantization/image_classification/README.md
0 → 100644
浏览文件 @
d3ba08b5
# 图像分类模型全量化示例
目录:
-
[
1. 简介
](
#1简介
)
-
[
2. Benchmark
](
#2Benchmark
)
-
[
3. 全量化流程
](
#全量化流程
)
-
[
3.1 准备环境
](
#31-准备准备
)
-
[
3.2 准备数据集
](
#32-准备数据集
)
-
[
3.3 准备预测模型
](
#33-准备预测模型
)
-
[
3.4 全量化并产出模型
](
#34-全量化并产出模型
)
-
[
4. 预测部署
](
#4预测部署
)
-
[
4.1 PaddleLite端侧部署
](
#42-PaddleLite端侧部署
)
-
[
5. FAQ
](
5FAQ
)
## 1. 简介
本示例将以图像分类模型MobileNetV1为例,介绍如何使用PaddleClas中Inference部署模型进行全量化。本示例全量化的策略使用了量化训练和蒸馏。
## 2. Benchmark
### PaddleClas模型
| 模型 | 策略 | Top-1 Acc | GPU 耗时(ms) | ARM CPU 耗时(ms) | 配置文件 | Inference模型 |
|:------:|:------:|:------:|:------:|:------:|:------:|:------:|
| MobileNetV3_large_x1_0 | Baseline | 75.32 | - | - | - |
[
Model
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x1_0_infer.tar
)
|
| MobileNetV3_large_x1_0 | 全量化 | 74.41 | - | - |
[
Config
](
./configs/MobileNetV3_large_x1_0/qat_dis.yaml
)
|
[
Model
](
https://paddle-slim-models.bj.bcebos.com/act/MobileNetV3_large_x1_0_QAT.tar
)
|
## 3. 全量化流程
#### 3.1 准备环境
-
python >= 3.6
-
PaddlePaddle >= 2.3 (可从
[
Paddle官网
](
https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/install/pip/linux-pip.html
)
下载安装)
-
PaddleSlim >= 2.3
安装paddlepaddle:
```
shell
# CPU
pip
install
paddlepaddle
# GPU
pip
install
paddlepaddle-gpu
```
安装paddleslim:
```
shell
pip
install
paddleslim
```
#### 3.2 准备数据集
本案例默认以ImageNet1k数据进行全量化实验,如数据集为非ImageNet1k格式数据, 请参考
[
PaddleClas数据准备文档
](
https://github.com/PaddlePaddle/PaddleClas/blob/release/2.3/docs/zh_CN/data_preparation/classification_dataset.md
)
。将下载好的数据集放在当前目录下
`./ILSVRC2012`
。
#### 3.3 准备预测模型
预测模型的格式为:
`model.pdmodel`
和
`model.pdiparams`
两个,带
`pdmodel`
的是模型文件,带
`pdiparams`
后缀的是权重文件。
注:其他像
`__model__`
和
`__params__`
分别对应
`model.pdmodel`
和
`model.pdiparams`
文件。
可在
[
PaddleClas预训练模型库
](
https://github.com/PaddlePaddle/PaddleClas/blob/release/2.3/docs/zh_CN/algorithm_introduction/ImageNet_models.md
)
中直接获取Inference模型,具体可参考下方获取MobileNetV1模型示例:
```
shell
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x1_0_infer.tar
tar
-xf
MobileNetV3_large_x1_0_infer.tar
```
也可根据
[
PaddleClas文档
](
https://github.com/PaddlePaddle/PaddleClas/blob/release/2.3/docs/zh_CN/inference_deployment/export_model.md
)
导出Inference模型。
#### 3.4 全量化并产出模型
全量化示例通过run.py脚本启动,会使用接口
```paddleslim.auto_compression.AutoCompression```
对模型进行量化训练和蒸馏。配置config文件中模型路径、数据集路径、蒸馏、量化和训练等部分的参数,配置完成后便可开始全量化。
**单卡启动**
```
shell
export
CUDA_VISIBLE_DEVICES
=
0
python run.py
--save_dir
=
'./save_quant_mobilev3/'
--config_path
=
'./configs/mobilenetv3_large_qat_dis.yaml'
```
**多卡启动**
图像分类训练任务中往往包含大量训练数据,以ImageNet为例,ImageNet22k数据集中包含1400W张图像,如果使用单卡训练,会非常耗时,使用分布式训练可以达到几乎线性的加速比。
```
shell
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3
python
-m
paddle.distributed.launch run.py
--save_dir
=
'./save_quant_mobilev3/'
--config_path
=
'./configs/mobilenetv3_large_qat_dis.yaml'
```
多卡训练指的是将训练任务按照一定方法拆分到多个训练节点完成数据读取、前向计算、反向梯度计算等过程,并将计算出的梯度上传至服务节点。服务节点在收到所有训练节点传来的梯度后,会将梯度聚合并更新参数。最后将参数发送给训练节点,开始新一轮的训练。多卡训练一轮训练能训练
```batch size * num gpus```
的数据,比如单卡的
```batch size```
为32,单轮训练的数据量即32,而四卡训练的
```batch size```
为32,单轮训练的数据量为128。
注意
```learning rate```
与
```batch size```
呈线性关系,这里单卡
```batch size```
为32,对应的
```learning rate```
为0.015,那么如果
```batch size```
减小4倍改为8,
```learning rate```
也需除以4;多卡时
```batch size```
为32,
```learning rate```
需乘上卡数。所以改变
```batch size```
或改变训练卡数都需要对应修改
```learning rate```
。
**验证精度**
根据训练log可以看到模型验证的精度,若需再次验证精度,修改配置文件
```./configs/MobileNetV1/qat_dis.yaml```
中所需验证模型的文件夹路径及模型和参数名称
```model_dir, model_filename, params_filename```
,然后使用以下命令进行验证:
```
shell
export
CUDA_VISIBLE_DEVICES
=
0
python eval.py
--config_path
=
'./configs/eval.yaml'
```
## 4.预测部署
#### 4.1 PaddleLite端侧部署
PaddleLite端侧部署可参考:
-
[
Paddle Lite部署
](
https://github.com/PaddlePaddle/PaddleClas/blob/develop/docs/zh_CN/inference_deployment/paddle_lite_deploy.md
)
## 5.FAQ
example/full_quantization/image_classification/configs/eval.yaml
0 → 100644
浏览文件 @
d3ba08b5
model_dir
:
./MobileNetV3_large_x1_0_infer
model_filename
:
inference.pdmodel
params_filename
:
inference.pdiparams
batch_size
:
128
data_dir
:
./ILSVRC2012_data_demo/ILSVRC2012/
img_size
:
224
resize_size
:
256
example/full_quantization/image_classification/configs/mobilenetv3_large_qat_dis.yaml
0 → 100644
浏览文件 @
d3ba08b5
Global
:
input_name
:
inputs
model_dir
:
MobileNetV3_large_x1_0_infer
model_filename
:
inference.pdmodel
params_filename
:
inference.pdiparams
batch_size
:
128
data_dir
:
./ILSVRC2012_data_demo/ILSVRC2012/
Distillation
:
alpha
:
1.0
loss
:
soft_label
Quantization
:
use_pact
:
true
activation_bits
:
8
activation_quantize_type
:
moving_average_abs_max
weight_quantize_type
:
channel_wise_abs_max
not_quant_pattern
:
-
skip_quant
quantize_op_types
:
-
conv2d
-
depthwise_conv2d
-
matmul
weight_bits
:
8
TrainConfig
:
epochs
:
2
eval_iter
:
5000
learning_rate
:
0.001
optimizer_builder
:
optimizer
:
type
:
Momentum
weight_decay
:
0.00002
origin_metric
:
0.7896
example/full_quantization/image_classification/eval.py
0 → 100644
浏览文件 @
d3ba08b5
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
sys
import
argparse
import
functools
from
functools
import
partial
import
numpy
as
np
import
paddle
import
paddle.nn
as
nn
from
paddle.io
import
DataLoader
from
imagenet_reader
import
ImageNetDataset
from
paddleslim.common
import
load_config
as
load_slim_config
def
argsparser
():
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
parser
.
add_argument
(
'--config_path'
,
type
=
str
,
default
=
'./image_classification/configs/eval.yaml'
,
help
=
"path of compression strategy config."
)
parser
.
add_argument
(
'--model_dir'
,
type
=
str
,
default
=
'./MobileNetV1_infer'
,
help
=
'model directory'
)
return
parser
def
eval_reader
(
data_dir
,
batch_size
,
crop_size
,
resize_size
):
val_reader
=
ImageNetDataset
(
mode
=
'val'
,
data_dir
=
data_dir
,
crop_size
=
crop_size
,
resize_size
=
resize_size
)
val_loader
=
DataLoader
(
val_reader
,
batch_size
=
global_config
[
'batch_size'
],
shuffle
=
False
,
drop_last
=
False
,
num_workers
=
0
)
return
val_loader
def
eval
():
devices
=
paddle
.
device
.
get_device
().
split
(
':'
)[
0
]
places
=
paddle
.
device
.
_convert_to_place
(
devices
)
exe
=
paddle
.
static
.
Executor
(
places
)
val_program
,
feed_target_names
,
fetch_targets
=
paddle
.
static
.
load_inference_model
(
global_config
[
"model_dir"
],
exe
,
model_filename
=
global_config
[
"model_filename"
],
params_filename
=
global_config
[
"params_filename"
])
print
(
'Loaded model from: {}'
.
format
(
global_config
[
"model_dir"
]))
val_loader
=
eval_reader
(
data_dir
,
batch_size
=
global_config
[
'batch_size'
],
crop_size
=
img_size
,
resize_size
=
resize_size
)
results
=
[]
print
(
'Evaluating...'
)
for
batch_id
,
(
image
,
label
)
in
enumerate
(
val_loader
):
image
=
np
.
array
(
image
)
label
=
np
.
array
(
label
).
astype
(
'int64'
)
pred
=
exe
.
run
(
val_program
,
feed
=
{
feed_target_names
[
0
]:
image
},
fetch_list
=
fetch_targets
)
pred
=
np
.
array
(
pred
[
0
])
label
=
np
.
array
(
label
)
sort_array
=
pred
.
argsort
(
axis
=
1
)
top_1_pred
=
sort_array
[:,
-
1
:][:,
::
-
1
]
top_1
=
np
.
mean
(
label
==
top_1_pred
)
top_5_pred
=
sort_array
[:,
-
5
:][:,
::
-
1
]
acc_num
=
0
for
i
in
range
(
len
(
label
)):
if
label
[
i
][
0
]
in
top_5_pred
[
i
]:
acc_num
+=
1
top_5
=
float
(
acc_num
)
/
len
(
label
)
results
.
append
([
top_1
,
top_5
])
result
=
np
.
mean
(
np
.
array
(
results
),
axis
=
0
)
return
result
[
0
]
def
main
(
args
):
global
global_config
global_config
=
load_slim_config
(
args
.
config_path
)
global
data_dir
data_dir
=
global_config
[
'data_dir'
]
if
args
.
model_dir
!=
global_config
[
'model_dir'
]:
global_config
[
'model_dir'
]
=
args
.
model_dir
global
img_size
,
resize_size
img_size
=
int
(
global_config
[
'img_size'
])
if
'img_size'
in
global_config
else
224
resize_size
=
int
(
global_config
[
'resize_size'
])
if
'resize_size'
in
global_config
else
256
result
=
eval
()
print
(
'Eval Top1:'
,
result
)
if
__name__
==
'__main__'
:
paddle
.
enable_static
()
parser
=
argsparser
()
args
=
parser
.
parse_args
()
main
(
args
)
example/full_quantization/image_classification/imagenet_reader.py
0 → 100644
浏览文件 @
d3ba08b5
import
os
import
math
import
random
import
functools
import
numpy
as
np
import
paddle
from
PIL
import
Image
,
ImageEnhance
from
paddle.io
import
Dataset
random
.
seed
(
0
)
np
.
random
.
seed
(
0
)
DATA_DIM
=
224
RESIZE_DIM
=
256
THREAD
=
16
BUF_SIZE
=
10240
DATA_DIR
=
'data/ILSVRC2012/'
DATA_DIR
=
os
.
path
.
join
(
os
.
path
.
split
(
os
.
path
.
realpath
(
__file__
))[
0
],
DATA_DIR
)
img_mean
=
np
.
array
([
0.485
,
0.456
,
0.406
]).
reshape
((
3
,
1
,
1
))
img_std
=
np
.
array
([
0.229
,
0.224
,
0.225
]).
reshape
((
3
,
1
,
1
))
def
resize_short
(
img
,
target_size
):
percent
=
float
(
target_size
)
/
min
(
img
.
size
[
0
],
img
.
size
[
1
])
resized_width
=
int
(
round
(
img
.
size
[
0
]
*
percent
))
resized_height
=
int
(
round
(
img
.
size
[
1
]
*
percent
))
img
=
img
.
resize
((
resized_width
,
resized_height
),
Image
.
LANCZOS
)
return
img
def
crop_image
(
img
,
target_size
,
center
):
width
,
height
=
img
.
size
size
=
target_size
if
center
==
True
:
w_start
=
(
width
-
size
)
//
2
h_start
=
(
height
-
size
)
//
2
else
:
w_start
=
np
.
random
.
randint
(
0
,
width
-
size
+
1
)
h_start
=
np
.
random
.
randint
(
0
,
height
-
size
+
1
)
w_end
=
w_start
+
size
h_end
=
h_start
+
size
img
=
img
.
crop
((
w_start
,
h_start
,
w_end
,
h_end
))
return
img
def
random_crop
(
img
,
size
,
scale
=
[
0.08
,
1.0
],
ratio
=
[
3.
/
4.
,
4.
/
3.
]):
aspect_ratio
=
math
.
sqrt
(
np
.
random
.
uniform
(
*
ratio
))
w
=
1.
*
aspect_ratio
h
=
1.
/
aspect_ratio
bound
=
min
((
float
(
img
.
size
[
0
])
/
img
.
size
[
1
])
/
(
w
**
2
),
(
float
(
img
.
size
[
1
])
/
img
.
size
[
0
])
/
(
h
**
2
))
scale_max
=
min
(
scale
[
1
],
bound
)
scale_min
=
min
(
scale
[
0
],
bound
)
target_area
=
img
.
size
[
0
]
*
img
.
size
[
1
]
*
np
.
random
.
uniform
(
scale_min
,
scale_max
)
target_size
=
math
.
sqrt
(
target_area
)
w
=
int
(
target_size
*
w
)
h
=
int
(
target_size
*
h
)
i
=
np
.
random
.
randint
(
0
,
img
.
size
[
0
]
-
w
+
1
)
j
=
np
.
random
.
randint
(
0
,
img
.
size
[
1
]
-
h
+
1
)
img
=
img
.
crop
((
i
,
j
,
i
+
w
,
j
+
h
))
img
=
img
.
resize
((
size
,
size
),
Image
.
LANCZOS
)
return
img
def
rotate_image
(
img
):
angle
=
np
.
random
.
randint
(
-
10
,
11
)
img
=
img
.
rotate
(
angle
)
return
img
def
distort_color
(
img
):
def
random_brightness
(
img
,
lower
=
0.5
,
upper
=
1.5
):
e
=
np
.
random
.
uniform
(
lower
,
upper
)
return
ImageEnhance
.
Brightness
(
img
).
enhance
(
e
)
def
random_contrast
(
img
,
lower
=
0.5
,
upper
=
1.5
):
e
=
np
.
random
.
uniform
(
lower
,
upper
)
return
ImageEnhance
.
Contrast
(
img
).
enhance
(
e
)
def
random_color
(
img
,
lower
=
0.5
,
upper
=
1.5
):
e
=
np
.
random
.
uniform
(
lower
,
upper
)
return
ImageEnhance
.
Color
(
img
).
enhance
(
e
)
ops
=
[
random_brightness
,
random_contrast
,
random_color
]
np
.
random
.
shuffle
(
ops
)
img
=
ops
[
0
](
img
)
img
=
ops
[
1
](
img
)
img
=
ops
[
2
](
img
)
return
img
def
process_image
(
sample
,
mode
,
color_jitter
,
rotate
,
crop_size
,
resize_size
):
img_path
=
sample
[
0
]
try
:
img
=
Image
.
open
(
img_path
)
except
:
print
(
img_path
,
"not exists!"
)
return
None
if
mode
==
'train'
:
if
rotate
:
img
=
rotate_image
(
img
)
img
=
random_crop
(
img
,
crop_size
)
else
:
img
=
resize_short
(
img
,
target_size
=
resize_size
)
img
=
crop_image
(
img
,
target_size
=
crop_size
,
center
=
True
)
if
mode
==
'train'
:
if
color_jitter
:
img
=
distort_color
(
img
)
if
np
.
random
.
randint
(
0
,
2
)
==
1
:
img
=
img
.
transpose
(
Image
.
FLIP_LEFT_RIGHT
)
if
img
.
mode
!=
'RGB'
:
img
=
img
.
convert
(
'RGB'
)
img
=
np
.
array
(
img
).
astype
(
'float32'
).
transpose
((
2
,
0
,
1
))
/
255
img
-=
img_mean
img
/=
img_std
if
mode
==
'train'
or
mode
==
'val'
:
return
img
,
sample
[
1
]
elif
mode
==
'test'
:
return
[
img
]
def
_reader_creator
(
file_list
,
mode
,
shuffle
=
False
,
color_jitter
=
False
,
rotate
=
False
,
data_dir
=
DATA_DIR
,
batch_size
=
1
):
def
reader
():
try
:
with
open
(
file_list
)
as
flist
:
full_lines
=
[
line
.
strip
()
for
line
in
flist
]
if
shuffle
:
np
.
random
.
shuffle
(
full_lines
)
lines
=
full_lines
for
line
in
lines
:
if
mode
==
'train'
or
mode
==
'val'
:
img_path
,
label
=
line
.
split
()
img_path
=
os
.
path
.
join
(
data_dir
,
img_path
)
yield
img_path
,
int
(
label
)
elif
mode
==
'test'
:
img_path
=
os
.
path
.
join
(
data_dir
,
line
)
yield
[
img_path
]
except
Exception
as
e
:
print
(
"Reader failed!
\n
{}"
.
format
(
str
(
e
)))
os
.
_exit
(
1
)
mapper
=
functools
.
partial
(
process_image
,
mode
=
mode
,
color_jitter
=
color_jitter
,
rotate
=
rotate
)
return
paddle
.
reader
.
xmap_readers
(
mapper
,
reader
,
THREAD
,
BUF_SIZE
)
def
train
(
data_dir
=
DATA_DIR
):
file_list
=
os
.
path
.
join
(
data_dir
,
'train_list.txt'
)
return
_reader_creator
(
file_list
,
'train'
,
shuffle
=
True
,
color_jitter
=
False
,
rotate
=
False
,
data_dir
=
data_dir
)
def
val
(
data_dir
=
DATA_DIR
):
file_list
=
os
.
path
.
join
(
data_dir
,
'val_list.txt'
)
return
_reader_creator
(
file_list
,
'val'
,
shuffle
=
False
,
data_dir
=
data_dir
)
def
test
(
data_dir
=
DATA_DIR
):
file_list
=
os
.
path
.
join
(
data_dir
,
'test_list.txt'
)
return
_reader_creator
(
file_list
,
'test'
,
shuffle
=
False
,
data_dir
=
data_dir
)
class
ImageNetDataset
(
Dataset
):
def
__init__
(
self
,
data_dir
=
DATA_DIR
,
mode
=
'train'
,
crop_size
=
DATA_DIM
,
resize_size
=
RESIZE_DIM
):
super
(
ImageNetDataset
,
self
).
__init__
()
self
.
data_dir
=
data_dir
self
.
crop_size
=
crop_size
self
.
resize_size
=
resize_size
train_file_list
=
os
.
path
.
join
(
data_dir
,
'train_list.txt'
)
val_file_list
=
os
.
path
.
join
(
data_dir
,
'val_list.txt'
)
test_file_list
=
os
.
path
.
join
(
data_dir
,
'test_list.txt'
)
self
.
mode
=
mode
if
mode
==
'train'
:
with
open
(
train_file_list
)
as
flist
:
full_lines
=
[
line
.
strip
()
for
line
in
flist
]
np
.
random
.
shuffle
(
full_lines
)
lines
=
full_lines
self
.
data
=
[
line
.
split
()
for
line
in
lines
]
else
:
with
open
(
val_file_list
)
as
flist
:
lines
=
[
line
.
strip
()
for
line
in
flist
]
self
.
data
=
[
line
.
split
()
for
line
in
lines
]
def
__getitem__
(
self
,
index
):
sample
=
self
.
data
[
index
]
data_path
=
os
.
path
.
join
(
self
.
data_dir
,
sample
[
0
])
if
self
.
mode
==
'train'
:
data
,
label
=
process_image
(
[
data_path
,
sample
[
1
]],
mode
=
'train'
,
color_jitter
=
False
,
rotate
=
False
,
crop_size
=
self
.
crop_size
,
resize_size
=
self
.
resize_size
)
return
data
,
np
.
array
([
label
]).
astype
(
'int64'
)
elif
self
.
mode
==
'val'
:
data
,
label
=
process_image
(
[
data_path
,
sample
[
1
]],
mode
=
'val'
,
color_jitter
=
False
,
rotate
=
False
,
crop_size
=
self
.
crop_size
,
resize_size
=
self
.
resize_size
)
return
data
,
np
.
array
([
label
]).
astype
(
'int64'
)
elif
self
.
mode
==
'test'
:
data
=
process_image
(
[
data_path
,
sample
[
1
]],
mode
=
'test'
,
color_jitter
=
False
,
rotate
=
False
,
crop_size
=
self
.
crop_size
,
resize_size
=
self
.
resize_size
)
return
data
def
__len__
(
self
):
return
len
(
self
.
data
)
example/full_quantization/image_classification/run.py
0 → 100644
浏览文件 @
d3ba08b5
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
sys
import
argparse
import
functools
from
functools
import
partial
import
math
from
tqdm
import
tqdm
import
numpy
as
np
import
paddle
import
paddle.nn
as
nn
from
paddle.io
import
DataLoader
from
imagenet_reader
import
ImageNetDataset
from
paddleslim.common
import
load_config
as
load_slim_config
from
paddleslim.auto_compression
import
AutoCompression
def
argsparser
():
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
parser
.
add_argument
(
'--config_path'
,
type
=
str
,
default
=
None
,
help
=
"path of compression strategy config."
,
required
=
True
)
parser
.
add_argument
(
'--save_dir'
,
type
=
str
,
default
=
'output'
,
help
=
"directory to save compressed model."
)
parser
.
add_argument
(
'--total_images'
,
type
=
int
,
default
=
1281167
,
help
=
"the number of total training images."
)
parser
.
add_argument
(
'--devices'
,
type
=
str
,
default
=
'gpu'
,
help
=
"which device used to compress."
)
return
parser
# yapf: enable
def
reader_wrapper
(
reader
,
input_name
):
def
gen
():
for
i
,
(
imgs
,
label
)
in
enumerate
(
reader
()):
yield
{
input_name
:
imgs
}
return
gen
def
eval_reader
(
data_dir
,
batch_size
,
crop_size
,
resize_size
,
place
=
None
):
val_reader
=
ImageNetDataset
(
mode
=
'val'
,
data_dir
=
data_dir
,
crop_size
=
crop_size
,
resize_size
=
resize_size
)
val_loader
=
DataLoader
(
val_reader
,
places
=
[
place
]
if
place
is
not
None
else
None
,
batch_size
=
global_config
[
'batch_size'
],
shuffle
=
False
,
drop_last
=
False
,
num_workers
=
0
)
return
val_loader
def
eval_function
(
exe
,
compiled_test_program
,
test_feed_names
,
test_fetch_list
):
val_loader
=
eval_reader
(
data_dir
,
batch_size
=
global_config
[
'batch_size'
],
crop_size
=
img_size
,
resize_size
=
resize_size
)
results
=
[]
with
tqdm
(
total
=
len
(
val_loader
),
bar_format
=
'Evaluation stage, Run batch:|{bar}| {n_fmt}/{total_fmt}'
,
ncols
=
80
)
as
t
:
for
batch_id
,
(
image
,
label
)
in
enumerate
(
val_loader
):
# top1_acc, top5_acc
if
len
(
test_feed_names
)
==
1
:
image
=
np
.
array
(
image
)
label
=
np
.
array
(
label
).
astype
(
'int64'
)
pred
=
exe
.
run
(
compiled_test_program
,
feed
=
{
test_feed_names
[
0
]:
image
},
fetch_list
=
test_fetch_list
)
pred
=
np
.
array
(
pred
[
0
])
label
=
np
.
array
(
label
)
sort_array
=
pred
.
argsort
(
axis
=
1
)
top_1_pred
=
sort_array
[:,
-
1
:][:,
::
-
1
]
top_1
=
np
.
mean
(
label
==
top_1_pred
)
top_5_pred
=
sort_array
[:,
-
5
:][:,
::
-
1
]
acc_num
=
0
for
i
in
range
(
len
(
label
)):
if
label
[
i
][
0
]
in
top_5_pred
[
i
]:
acc_num
+=
1
top_5
=
float
(
acc_num
)
/
len
(
label
)
results
.
append
([
top_1
,
top_5
])
else
:
# eval "eval model", which inputs are image and label, output is top1 and top5 accuracy
image
=
np
.
array
(
image
)
label
=
np
.
array
(
label
).
astype
(
'int64'
)
result
=
exe
.
run
(
compiled_test_program
,
feed
=
{
test_feed_names
[
0
]:
image
,
test_feed_names
[
1
]:
label
},
fetch_list
=
test_fetch_list
)
result
=
[
np
.
mean
(
r
)
for
r
in
result
]
results
.
append
(
result
)
t
.
update
()
result
=
np
.
mean
(
np
.
array
(
results
),
axis
=
0
)
return
result
[
0
]
def
main
():
rank_id
=
paddle
.
distributed
.
get_rank
()
if
args
.
devices
==
'gpu'
:
place
=
paddle
.
CUDAPlace
(
rank_id
)
paddle
.
set_device
(
'gpu'
)
else
:
place
=
paddle
.
CPUPlace
()
paddle
.
set_device
(
'cpu'
)
global
global_config
all_config
=
load_slim_config
(
args
.
config_path
)
assert
"Global"
in
all_config
,
f
"Key 'Global' not found in config file.
\n
{
all_config
}
"
global_config
=
all_config
[
"Global"
]
gpu_num
=
paddle
.
distributed
.
get_world_size
()
if
isinstance
(
all_config
[
'TrainConfig'
][
'learning_rate'
],
dict
)
and
all_config
[
'TrainConfig'
][
'learning_rate'
][
'type'
]
==
'CosineAnnealingDecay'
:
step
=
int
(
math
.
ceil
(
float
(
args
.
total_images
)
/
(
global_config
[
'batch_size'
]
*
gpu_num
)))
all_config
[
'TrainConfig'
][
'learning_rate'
][
'T_max'
]
=
step
print
(
'total training steps:'
,
step
)
global
data_dir
data_dir
=
global_config
[
'data_dir'
]
global
img_size
,
resize_size
img_size
=
global_config
[
'img_size'
]
if
'img_size'
in
global_config
else
224
resize_size
=
global_config
[
'resize_size'
]
if
'resize_size'
in
global_config
else
256
train_dataset
=
ImageNetDataset
(
mode
=
'train'
,
data_dir
=
data_dir
,
crop_size
=
img_size
,
resize_size
=
resize_size
)
train_loader
=
DataLoader
(
train_dataset
,
places
=
[
place
],
batch_size
=
global_config
[
'batch_size'
],
shuffle
=
True
,
drop_last
=
True
,
num_workers
=
0
)
train_dataloader
=
reader_wrapper
(
train_loader
,
global_config
[
'input_name'
])
ac
=
AutoCompression
(
model_dir
=
global_config
[
'model_dir'
],
model_filename
=
global_config
[
'model_filename'
],
params_filename
=
global_config
[
'params_filename'
],
save_dir
=
args
.
save_dir
,
config
=
all_config
,
train_dataloader
=
train_dataloader
,
eval_callback
=
eval_function
if
rank_id
==
0
else
None
,
eval_dataloader
=
reader_wrapper
(
eval_reader
(
data_dir
,
global_config
[
'batch_size'
],
crop_size
=
img_size
,
resize_size
=
resize_size
,
place
=
place
),
global_config
[
'input_name'
]))
ac
.
compress
()
if
__name__
==
'__main__'
:
paddle
.
enable_static
()
parser
=
argsparser
()
args
=
parser
.
parse_args
()
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录