未验证 提交 267a3f22 编写于 作者: W whs 提交者: GitHub

Add optimizer for qat demo (#1726)

上级 100b7e13
......@@ -187,7 +187,8 @@ def main():
dummy_input = paddle.static.InputSpec(
shape=[None, 3, 224, 224], dtype='float32')
paddle.jit.save(infer_model, "./int8_infer", [dummy_input])
save_path = os.path.join(FLAGS.output_dir, "int8_infer")
paddle.jit.save(infer_model, save_path, [dummy_input])
if __name__ == '__main__':
......
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
def piecewise_decay(net, device_num, args):
step = int(
math.ceil(float(args.total_images) / (args.batch_size * device_num)))
bd = [step * e for e in args.step_epochs]
lr = [args.lr * (0.1**i) for i in range(len(bd) + 1)]
learning_rate = paddle.optimizer.lr.PiecewiseDecay(
boundaries=bd, values=lr, verbose=False)
optimizer = paddle.optimizer.Momentum(
parameters=net.parameters(),
learning_rate=learning_rate,
momentum=args.momentum_rate,
weight_decay=paddle.regularizer.L2Decay(args.l2_decay))
return optimizer, learning_rate
def cosine_decay(net, device_num, args):
step = int(
math.ceil(float(args.total_images) / (args.batch_size * device_num)))
learning_rate = paddle.optimizer.lr.CosineAnnealingDecay(
learning_rate=args.lr, T_max=step * args.num_epochs, verbose=False)
optimizer = paddle.optimizer.Momentum(
parameters=net.parameters(),
learning_rate=learning_rate,
momentum=args.momentum_rate,
weight_decay=paddle.regularizer.L2Decay(args.l2_decay))
return optimizer, learning_rate
def create_optimizer(net, device_num, args):
if args.lr_strategy == "piecewise_decay":
return piecewise_decay(net, device_num, args)
elif args.lr_strategy == "cosine_decay":
return cosine_decay(net, device_num, args)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册