Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
100b7e13
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
1 年多 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
100b7e13
编写于
4月 06, 2023
作者:
W
whs
提交者:
GitHub
4月 06, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add tutorial of QAT for classification (#1716)
上级
99cd470c
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
432 addition
and
0 deletion
+432
-0
example/quantization/qat/classification/README.md
example/quantization/qat/classification/README.md
+41
-0
example/quantization/qat/classification/args.py
example/quantization/qat/classification/args.py
+111
-0
example/quantization/qat/classification/train.py
example/quantization/qat/classification/train.py
+280
-0
未找到文件。
example/quantization/qat/classification/README.md
0 → 100644
浏览文件 @
100b7e13
# 动态图量化训练
本示例介绍如何对动态图模型进行量化训练,示例以常用的MobileNetV1,介绍如何对其进行量化训练。
## 分类模型的量化训练流程
### 准备数据
在当前目录下创建
``data``
文件夹,将
``ImageNet``
数据集解压在
``data``
文件夹下,解压后
``data/ILSVRC2012``
文件夹下应包含以下文件:
-
``'train'``
文件夹,训练图片
-
``'train_list.txt'``
文件
-
``'val'``
文件夹,验证图片
-
``'val_list.txt'``
文件
### 准备需要量化的模型
本示例直接使用
[
paddle vision
](
https://github.com/PaddlePaddle/Paddle/tree/develop/python/paddle/vision/models
)
内置的模型结构和预训练权重。通过以下命令查看支持的所有模型:
```
python train.py --help
```
### 训练命令
-
MobileNetV1
我们使用普通的量化训练方法即可,启动命令如下:
```
bash
# 单卡训练
python train.py
--model
=
mobilenet_v1
# 多卡训练,以0到3号卡为例
python
-m
paddle.distributed.launch
--gpus
=
"0,1,2,3"
train.py
--model
=
mobilenet_v1
```
### 量化结果
| 模型 | FP32模型准确率(Top1/Top5) | 量化方法 | 量化模型准确率(Top1/Top5) |
| ----------- | --------------------------- | ------------ | --------------------------- |
| MobileNetV1 | 70.99/89.65 | PACT在线量化 | 70.63/89.65 |
example/quantization/qat/classification/args.py
0 → 100644
浏览文件 @
100b7e13
import
argparse
import
six
from
inspect
import
isfunction
from
types
import
FunctionType
from
typing
import
Dict
import
paddle.vision.models
as
models
SUPPORT_MODELS
:
Dict
[
str
,
FunctionType
]
=
{}
for
_name
,
_module
in
models
.
__dict__
.
items
():
if
isfunction
(
_module
)
and
'pretrained'
in
_module
.
__code__
.
co_varnames
:
SUPPORT_MODELS
[
_name
]
=
_module
def
parse_args
():
parser
=
create_argparse
()
args
=
parser
.
parse_args
()
print
(
"----------- Configuration Arguments -----------"
)
for
arg
,
value
in
sorted
(
six
.
iteritems
(
vars
(
args
))):
print
(
"%s: %s"
%
(
arg
,
value
))
print
(
"------------------------------------------------"
)
return
args
def
create_argparse
():
parser
=
argparse
.
ArgumentParser
(
"Quantization on ImageNet"
)
parser
.
add_argument
(
"--batch_size"
,
type
=
int
,
default
=
128
,
help
=
"Single Card Minibatch size."
,
)
parser
.
add_argument
(
"--pretrained_model"
,
type
=
str
,
default
=
None
,
help
=
"Whether to use pretrained model."
)
parser
.
add_argument
(
"--use_gpu"
,
type
=
bool
,
default
=
True
,
help
=
"Whether to use GPU or not."
,
)
parser
.
add_argument
(
"--model"
,
type
=
str
,
default
=
"mobilenet_v1"
,
help
=
"The target model."
)
parser
.
add_argument
(
"--lr"
,
type
=
float
,
default
=
0.0001
,
help
=
"The learning rate used to fine-tune pruned model."
)
parser
.
add_argument
(
"--lr_strategy"
,
type
=
str
,
default
=
"piecewise_decay"
,
help
=
"The learning rate decay strategy."
)
parser
.
add_argument
(
"--l2_decay"
,
type
=
float
,
default
=
3e-5
,
help
=
"The l2_decay parameter."
)
parser
.
add_argument
(
"--ls_epsilon"
,
type
=
float
,
default
=
0.0
,
help
=
"Label smooth epsilon."
)
parser
.
add_argument
(
"--use_pact"
,
type
=
bool
,
default
=
False
,
help
=
"Whether to use PACT method."
)
parser
.
add_argument
(
"--ce_test"
,
type
=
bool
,
default
=
False
,
help
=
"Whether to CE test."
)
parser
.
add_argument
(
"--onnx_format"
,
type
=
bool
,
default
=
False
,
help
=
"Whether to export the quantized model with format of ONNX."
)
parser
.
add_argument
(
"--momentum_rate"
,
type
=
float
,
default
=
0.9
,
help
=
"The value of momentum_rate."
)
parser
.
add_argument
(
"--num_epochs"
,
type
=
int
,
default
=
10
,
help
=
"The number of total epochs."
)
parser
.
add_argument
(
"--total_images"
,
type
=
int
,
default
=
1281167
,
help
=
"The number of total training images."
)
parser
.
add_argument
(
"--data"
,
type
=
str
,
default
=
"imagenet"
,
help
=
"Which data to use. 'cifar10' or 'imagenet'"
)
parser
.
add_argument
(
"--log_period"
,
type
=
int
,
default
=
10
,
help
=
"Log period in batches."
)
parser
.
add_argument
(
"--infer_model"
,
type
=
str
,
default
=
"./infer_model/int8_infer"
,
help
=
"inference model saved directory."
)
parser
.
add_argument
(
"--checkpoints"
,
type
=
str
,
default
=
"./checkpoints"
,
help
=
"checkpoints directory."
)
parser
.
add_argument
(
"--step_epochs"
,
nargs
=
"+"
,
type
=
int
,
default
=
[
10
,
20
,
30
],
help
=
"piecewise decay step"
)
return
parser
example/quantization/qat/classification/train.py
0 → 100644
浏览文件 @
100b7e13
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
sys
import
logging
import
paddle
import
time
import
random
import
numpy
as
np
from
paddleslim.common
import
get_logger
from
paddle.quantization
import
QuantConfig
from
paddle.quantization.quanters
import
FakeQuanterWithAbsMaxObserver
from
paddle.quantization.quanters.abs_max
import
FakeQuanterWithAbsMaxObserverLayer
from
paddleslim.quant.quanters
import
PACTQuanter
from
paddle.quantization
import
QAT
sys
.
path
.
append
(
os
.
path
.
join
(
os
.
path
.
dirname
(
"__file__"
)))
from
optimizer
import
create_optimizer
from
args
import
parse_args
from
args
import
SUPPORT_MODELS
_logger
=
get_logger
(
__name__
,
level
=
logging
.
INFO
)
def
compress
(
args
):
num_workers
=
4
shuffle
=
True
if
args
.
ce_test
:
# set seed
seed
=
111
paddle
.
seed
(
seed
)
np
.
random
.
seed
(
seed
)
random
.
seed
(
seed
)
num_workers
=
0
shuffle
=
False
if
args
.
data
==
"cifar10"
:
transform
=
T
.
Compose
([
T
.
Transpose
(),
T
.
Normalize
([
127.5
],
[
127.5
])])
train_dataset
=
paddle
.
vision
.
datasets
.
Cifar10
(
mode
=
"train"
,
backend
=
"cv2"
,
transform
=
transform
)
val_dataset
=
paddle
.
vision
.
datasets
.
Cifar10
(
mode
=
"test"
,
backend
=
"cv2"
,
transform
=
transform
)
class_dim
=
10
image_shape
=
[
3
,
32
,
32
]
pretrain
=
False
args
.
total_images
=
50000
elif
args
.
data
==
"imagenet"
:
import
imagenet_reader
as
reader
train_dataset
=
reader
.
ImageNetDataset
(
mode
=
'train'
)
val_dataset
=
reader
.
ImageNetDataset
(
mode
=
'val'
)
class_dim
=
1000
image_shape
=
"3,224,224"
else
:
raise
ValueError
(
"{} is not supported."
.
format
(
args
.
data
))
trainer_num
=
paddle
.
distributed
.
get_world_size
()
use_data_parallel
=
trainer_num
!=
1
place
=
paddle
.
set_device
(
'gpu'
if
args
.
use_gpu
else
'cpu'
)
# model definition
if
use_data_parallel
:
paddle
.
distributed
.
init_parallel_env
()
pretrain
=
True
if
args
.
data
==
"imagenet"
else
False
model
=
SUPPORT_MODELS
[
args
.
model
](
pretrained
=
pretrain
,
num_classes
=
class_dim
)
train_batch_sampler
=
paddle
.
io
.
DistributedBatchSampler
(
train_dataset
,
batch_size
=
args
.
batch_size
,
shuffle
=
shuffle
,
drop_last
=
True
)
train_loader
=
paddle
.
io
.
DataLoader
(
train_dataset
,
batch_sampler
=
train_batch_sampler
,
places
=
place
,
return_list
=
True
,
num_workers
=
num_workers
)
valid_loader
=
paddle
.
io
.
DataLoader
(
val_dataset
,
places
=
place
,
batch_size
=
args
.
batch_size
,
shuffle
=
False
,
drop_last
=
False
,
return_list
=
True
,
num_workers
=
num_workers
)
@
paddle
.
no_grad
()
def
test
(
epoch
,
net
):
net
.
eval
()
batch_id
=
0
acc_top1_ns
=
[]
acc_top5_ns
=
[]
eval_reader_cost
=
0.0
eval_run_cost
=
0.0
total_samples
=
0
reader_start
=
time
.
time
()
for
data
in
valid_loader
():
eval_reader_cost
+=
time
.
time
()
-
reader_start
image
=
data
[
0
]
label
=
data
[
1
]
if
args
.
data
==
"cifar10"
:
label
=
paddle
.
reshape
(
label
,
[
-
1
,
1
])
eval_start
=
time
.
time
()
out
=
net
(
image
)
acc_top1
=
paddle
.
metric
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
1
)
acc_top5
=
paddle
.
metric
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
5
)
eval_run_cost
+=
time
.
time
()
-
eval_start
batch_size
=
image
.
shape
[
0
]
total_samples
+=
batch_size
if
batch_id
%
args
.
log_period
==
0
:
log_period
=
1
if
batch_id
==
0
else
args
.
log_period
_logger
.
info
(
"Eval epoch[{}] batch[{}] - top1: {:.6f}; top5: {:.6f}; avg_reader_cost: {:.6f} s, avg_batch_cost: {:.6f} s, avg_samples: {}, avg_ips: {:.3f} images/s"
.
format
(
epoch
,
batch_id
,
np
.
mean
(
acc_top1
.
numpy
()),
np
.
mean
(
acc_top5
.
numpy
()),
eval_reader_cost
/
log_period
,
(
eval_reader_cost
+
eval_run_cost
)
/
log_period
,
total_samples
/
log_period
,
total_samples
/
(
eval_reader_cost
+
eval_run_cost
)))
eval_reader_cost
=
0.0
eval_run_cost
=
0.0
total_samples
=
0
acc_top1_ns
.
append
(
np
.
mean
(
acc_top1
.
numpy
()))
acc_top5_ns
.
append
(
np
.
mean
(
acc_top5
.
numpy
()))
batch_id
+=
1
reader_start
=
time
.
time
()
_logger
.
info
(
"Final eval epoch[{}] - acc_top1: {:.6f}; acc_top5: {:.6f}"
.
format
(
epoch
,
np
.
mean
(
np
.
array
(
acc_top1_ns
)),
np
.
mean
(
np
.
array
(
acc_top5_ns
))))
return
np
.
mean
(
np
.
array
(
acc_top1_ns
))
test
(
-
1
,
model
)
############################################################################################################
# 1. quantization
############################################################################################################
activation_quanter
=
PACTQuanter
(
FakeQuanterWithAbsMaxObserverLayer
)
weight_quanter
=
FakeQuanterWithAbsMaxObserver
(
moving_rate
=
0.9
)
q_config
=
QuantConfig
(
activation
=
None
,
weight
=
None
)
q_config
.
add_type_config
(
[
paddle
.
nn
.
Conv2D
,
paddle
.
nn
.
Linear
],
activation
=
activation_quanter
,
weight
=
weight_quanter
)
quanter
=
QAT
(
config
=
q_config
)
quant_model
=
quanter
.
quantize
(
model
)
opt
,
lr
=
create_optimizer
(
quant_model
,
trainer_num
,
args
)
if
use_data_parallel
:
net
=
paddle
.
DataParallel
(
quant_model
)
def
cross_entropy
(
input
,
target
,
ls_epsilon
):
if
ls_epsilon
>
0
:
if
target
.
shape
[
-
1
]
!=
class_dim
:
target
=
paddle
.
nn
.
functional
.
one_hot
(
target
,
class_dim
)
target
=
paddle
.
nn
.
functional
.
label_smooth
(
target
,
epsilon
=
ls_epsilon
)
target
=
paddle
.
reshape
(
target
,
shape
=
[
-
1
,
class_dim
])
input
=
-
paddle
.
nn
.
functional
.
log_softmax
(
input
,
axis
=-
1
)
cost
=
paddle
.
sum
(
target
*
input
,
axis
=-
1
)
else
:
cost
=
paddle
.
nn
.
functional
.
cross_entropy
(
input
=
input
,
label
=
target
)
avg_cost
=
paddle
.
mean
(
cost
)
return
avg_cost
def
train
(
epoch
,
net
):
net
.
train
()
batch_id
=
0
train_reader_cost
=
0.0
train_run_cost
=
0.0
total_samples
=
0
reader_start
=
time
.
time
()
for
data
in
train_loader
():
train_reader_cost
+=
time
.
time
()
-
reader_start
image
=
data
[
0
]
label
=
data
[
1
]
if
args
.
data
==
"cifar10"
:
label
=
paddle
.
reshape
(
label
,
[
-
1
,
1
])
train_start
=
time
.
time
()
out
=
net
(
image
)
avg_cost
=
cross_entropy
(
out
,
label
,
args
.
ls_epsilon
)
acc_top1
=
paddle
.
metric
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
1
)
acc_top5
=
paddle
.
metric
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
5
)
avg_cost
.
backward
()
opt
.
step
()
opt
.
clear_grad
()
lr
.
step
()
loss_n
=
np
.
mean
(
avg_cost
.
numpy
())
acc_top1_n
=
np
.
mean
(
acc_top1
.
numpy
())
acc_top5_n
=
np
.
mean
(
acc_top5
.
numpy
())
train_run_cost
+=
time
.
time
()
-
train_start
batch_size
=
image
.
shape
[
0
]
total_samples
+=
batch_size
if
batch_id
%
args
.
log_period
==
0
:
log_period
=
1
if
batch_id
==
0
else
args
.
log_period
_logger
.
info
(
"epoch[{}]-batch[{}] lr: {:.6f} - loss: {:.6f}; top1: {:.6f}; top5: {:.6f}; avg_reader_cost: {:.6f} s, avg_batch_cost: {:.6f} s, avg_samples: {}, avg_ips: {:.3f} images/s"
.
format
(
epoch
,
batch_id
,
lr
.
get_lr
(),
loss_n
,
acc_top1_n
,
acc_top5_n
,
train_reader_cost
/
log_period
,
(
train_reader_cost
+
train_run_cost
)
/
log_period
,
total_samples
/
log_period
,
total_samples
/
(
train_reader_cost
+
train_run_cost
)))
train_reader_cost
=
0.0
train_run_cost
=
0.0
total_samples
=
0
batch_id
+=
1
reader_start
=
time
.
time
()
############################################################################################################
# train loop
############################################################################################################
start_epoch
=
0
ck_info
=
args
.
checkpoints
+
"/checkpoints.info"
if
not
os
.
path
.
exists
(
args
.
checkpoints
):
os
.
makedirs
(
args
.
checkpoints
)
if
os
.
path
.
isfile
(
ck_info
):
with
open
(
ck_info
,
'r'
)
as
f
:
start_epoch
=
int
(
f
.
readline
())
+
1
quant_model
.
load_dict
(
paddle
.
load
(
f
"
{
args
.
checkpoints
}
/
{
start_epoch
-
1
}
.pdparams"
))
_logger
.
info
(
f
"Load checkpoint from
{
args
.
checkpoints
}
/
{
start_epoch
-
1
}
.pdparams"
)
test
(
start_epoch
-
1
,
quant_model
)
for
_epoch
in
range
(
start_epoch
,
args
.
num_epochs
):
train
(
_epoch
,
quant_model
)
acc1
=
test
(
_epoch
,
quant_model
)
paddle
.
save
(
quant_model
.
state_dict
(),
f
"
{
args
.
checkpoints
}
/
{
_epoch
}
.pdparams"
)
with
open
(
ck_info
,
'w'
)
as
f
:
f
.
write
(
str
(
_epoch
))
_logger
.
info
(
f
"Save checkpoint to
{
args
.
checkpoints
}
/
{
_epoch
}
.pdparams"
)
infer_model
=
quanter
.
convert
(
quant_model
)
dummy_input
=
paddle
.
static
.
InputSpec
(
shape
=
[
None
,
3
,
224
,
224
],
dtype
=
'float32'
)
paddle
.
jit
.
save
(
infer_model
,
args
.
infer_model
,
[
dummy_input
])
_logger
.
info
(
f
"Saved inference model to
{
args
.
infer_model
}
"
)
if
__name__
==
'__main__'
:
args
=
parse_args
()
compress
(
args
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录