model_zoo_en.md 26.4 KB
Newer Older
W
whs 已提交
1 2
# Model Zoo

3
## 1. Image Classification
W
whs 已提交
4

5
Dataset:ImageNet1000
W
whs 已提交
6

7
### 1.1 Quantization
W
whs 已提交
8

9
| Model | Method | Top-1/Top-5 Acc | Model Size(MB) | TensorRT latency(V100, ms) | Download |
W
whs 已提交
10
|:--:|:---:|:--:|:--:|:--:|:--:|
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
|MobileNetV1|-|70.99%/89.68%| 17 | -| [model](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar) |
|MobileNetV1|quant_post|70.18%/89.25% (-0.81%/-0.43%)| 4.4 | - | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_quant_post.tar) |
|MobileNetV1|quant_aware|70.60%/89.57% (-0.39%/-0.11%)| 4.4 | -| [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_quant_aware.tar) |
| MobileNetV2 | - |72.15%/90.65%| 15 | - | [model](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) |
| MobileNetV2 | quant_post | 71.15%/90.11% (-1%/-0.54%)| 4.0   | - | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV2_quant_post.tar) |
| MobileNetV2 | quant_aware |72.05%/90.63% (-0.1%/-0.02%)| 4.0 | - | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV2_quant_aware.tar) |
|ResNet50|-|76.50%/93.00%| 99 | 2.71 | [model](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar) |
|ResNet50|quant_post|76.33%/93.02% (-0.17%/+0.02%)| 25.1| 1.19 | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet50_quant_post.tar) |
|ResNet50|quant_aware|    76.48%/93.11% (-0.02%/+0.11%)| 25.1 | 1.17 | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet50_quant_awre.tar) |

PaddleLite latency(ms)

| Device    | Model    | Method      | armv7 Thread 1 | armv7 Thread 2 | armv7 Thread 4 | armv8 Thread 1 | armv8 Thread 2 | armv8 Thread 4 |
| ------- | ----------- | ------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- |
| Qualcomm 835 | MobileNetV1 | FP32 baseline | 96.1942        | 53.2058        | 32.4468        | 88.4955        | 47.95          | 27.5189        |
| Qualcomm 835 | MobileNetV1 | quant_aware   | 60.8186        | 32.1931        | 16.4275        | 56.4311        | 29.5446        | 15.1053        |
| Qualcomm 835 | MobileNetV1 | quant_post    | 60.5615        | 32.4016        | 16.6596        | 56.5266        | 29.7178        | 15.1459        |
| Qualcomm 835 | MobileNetV2 | FP32 baseline | 65.715         | 38.1346        | 25.155         | 61.3593        | 36.2038        | 22.849         |
| Qualcomm 835 | MobileNetV2 | quant_aware   | 48.3655        | 30.2021        | 21.9303        | 46.1487        | 27.3146        | 18.3053        |
| Qualcomm 835 | MobileNetV2 | quant_post    | 48.3495        | 30.3069        | 22.1506        | 45.8715        | 27.4105        | 18.2223        |
| Qualcomm 835 | ResNet50    | FP32 baseline | 526.811        | 319.6486       | 205.8345       | 506.1138       | 335.1584       | 214.8936       |
| Qualcomm 835 | ResNet50    | quant_aware   | 475.4538       | 256.8672       | 139.699        | 461.7344       | 247.9506       | 145.9847       |
| Qualcomm 835 | ResNet50    | quant_post    | 476.0507       | 256.5963       | 139.7266       | 461.9176       | 248.3795       | 149.353        |
| Qualcomm 855 | MobileNetV1 | FP32 baseline | 33.5086        | 19.5773        | 11.7534        | 31.3474        | 18.5382        | 10.0811        |
| Qualcomm 855 | MobileNetV1 | quant_aware   | 36.7067        | 21.628         | 11.0372        | 14.0238        | 8.199          | 4.2588         |
| Qualcomm 855 | MobileNetV1 | quant_post    | 37.0498        | 21.7081        | 11.0779        | 14.0947        | 8.1926         | 4.2934         |
| Qualcomm 855 | MobileNetV2 | FP32 baseline | 25.0396        | 15.2862        | 9.6609         | 22.909         | 14.1797        | 8.8325         |
| Qualcomm 855 | MobileNetV2 | quant_aware   | 28.1583        | 18.3317        | 11.8103        | 16.9158        | 11.1606        | 7.4148         |
| Qualcomm 855 | MobileNetV2 | quant_post    | 28.1631        | 18.3917        | 11.8333        | 16.9399        | 11.1772        | 7.4176         |
| Qualcomm 855 | ResNet50    | FP32 baseline | 185.3705       | 113.0825       | 87.0741        | 177.7367       | 110.0433       | 74.4114        |
| Qualcomm 855 | ResNet50    | quant_aware   | 327.6883       | 202.4536       | 106.243        | 243.5621       | 150.0542       | 78.4205        |
| Qualcomm 855 | ResNet50    | quant_post    | 328.2683       | 201.9937       | 106.744        | 242.6397       | 150.0338       | 79.8659        |
| Kirin 970 | MobileNetV1 | FP32 baseline | 101.2455       | 56.4053        | 35.6484        | 94.8985        | 51.7251        | 31.9511        |
| Kirin 970 | MobileNetV1 | quant_aware   | 62.5012        | 32.1863        | 16.6018        | 57.7477        | 29.2116        | 15.0703        |
| Kirin 970 | MobileNetV1 | quant_post    | 62.4412        | 32.2585        | 16.6215        | 57.825         | 29.2573        | 15.1206        |
| Kirin 970 | MobileNetV2 | FP32 baseline | 70.4176        | 42.0795        | 25.1939        | 68.9597        | 39.2145        | 22.6617        |
| Kirin 970 | MobileNetV2 | quant_aware   | 52.9961        | 31.5323        | 22.1447        | 49.4858        | 28.0856        | 18.7287        |
| Kirin 970 | MobileNetV2 | quant_post    | 53.0961        | 31.7987        | 21.8334        | 49.383         | 28.2358        | 18.3642        |
| Kirin 970 | ResNet50    | FP32 baseline | 586.8943       | 344.0858       | 228.2293       | 573.3344       | 351.4332       | 225.8006       |
| Kirin 970 | ResNet50    | quant_aware   | 488.361        | 260.1697       | 142.416        | 479.5668       | 249.8485       | 138.1742       |
| Kirin 970 | ResNet50    | quant_post    | 489.6188       | 258.3279       | 142.6063       | 480.0064       | 249.5339       | 138.5284       |

### 1.2 Pruning

PaddleLite:

env: Qualcomm SnapDragon 845 + armv8

criterion: time cost in Thread1/Thread2/Thread4

PaddleLite version: v2.3


|Model | Method | Top-1/Top-5 Acc | ModelSize(MB) | GFLOPs |PaddleLite cost(ms)|TensorRT speed(FPS)| download |
|:--:|:---:|:--:|:--:|:--:|:--:|:--:|:--:|
| MobileNetV1 |    Baseline    |         70.99%/89.68%         |       17       |  1.11  |66.052\35.8014\19.5762|-| [download](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar) |
| MobileNetV1 |  uniform -50%  | 69.4%/88.66% (-1.59%/-1.02%)  |       9        |  0.56  | 33.5636\18.6834\10.5076|-|[download](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_uniform-50.tar) |
| MobileNetV1 | sensitive -30% |  70.4%/89.3% (-0.59%/-0.38%)  |       12       |  0.74  | 46.5958\25.3098\13.6982|-|[download](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_sensitive-30.tar) |
| MobileNetV1 | sensitive -50% | 69.8% / 88.9% (-1.19%/-0.78%) |       9        |  0.56  |37.9892\20.7882\11.3144|-| [download](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_sensitive-50.tar) |
| MobileNetV2 |       -        |         72.15%/90.65%         |       15       |  0.59  |41.7874\23.375\13.3998|-| [download](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) |
| MobileNetV2 |  uniform -50%  | 65.79%/86.11% (-6.35%/-4.47%) |       11       | 0.296  |23.8842\13.8698\8.5572|-| [download](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV2_uniform-50.tar) |
|  ResNet34   |       -        |         72.15%/90.65%         |       84       |  7.36  |217.808\139.943\96.7504|342.32| [download](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar) |
|  ResNet34   |  uniform -50%  | 70.99%/89.95% (-1.36%/-0.87%) |       41       |  3.67  |114.787\75.0332\51.8438|452.41| [download](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet34_uniform-50.tar) |
|  ResNet34   |  auto -55.05%  | 70.24%/89.63% (-2.04%/-1.06%) |       33       |  3.31  |105.924\69.3222\48.0246|457.25| [download](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet34_auto-55.tar) |

### 1.3 Distillation

| Model | Method | Top-1/Top-5 Acc | Model Size(MB) | Download |
W
whs 已提交
79
|:--:|:---:|:--:|:--:|:--:|
80 81 82 83 84 85 86 87
| MobileNetV1 |                     student                     |  70.99%/89.68%  |       17       | [model](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar) |
|ResNet50_vd|teacher|79.12%/94.44%| 99 | [model](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar) |
|MobileNetV1|ResNet50_vd<sup>[1](#trans1)</sup> distill|72.77%/90.68% (+1.78%/+1.00%)| 17 | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_distilled.tar) |
| MobileNetV2 |                     student                     |  72.15%/90.65%  |       15       | [model](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) |
| MobileNetV2 |            ResNet50_vd distill             |  74.28%/91.53% (+2.13%/+0.88%)  |       15       | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV2_distilled.tar) |
|  ResNet50   |                     student                     |  76.50%/93.00%  |       99       | [model](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar) |
|ResNet101|teacher|77.56%/93.64%| 173 | [model](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar) |
|  ResNet50   |             ResNet101 distill              |  77.29%/93.65% (+0.79%/+0.65%)  |       99       | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet50_distilled.tar) |
W
whs 已提交
88

89
Note: The `_vd` suffix indicates that the pre-trained model uses Mixup. Please refer to the detailed introduction: [mixup: Beyond Empirical Risk Minimization](https://arxiv.org/abs/1710.09412)
W
whs 已提交
90 91


C
ceci3 已提交
92 93 94 95
### 1.4 NAS

| Model | Method | Top-1/Top-5 Acc | Volume(MB) | GFLOPs | Download |
|:--:|:---:|:--:|:--:|:--:|:--:|
C
ceci3 已提交
96 97 98 99 100 101 102 103 104
|   MobileNetV2   |       -        |            72.15%/90.65%           |     15      |  0.59  | [model](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) |
| MobileNetV2_NAS |     SANAS      |  71.518%/90.208% (-0.632%/-0.442%) |     14      | 0.295  | [model](https://paddlemodels.cdn.bcebos.com/PaddleSlim/MobileNetV2_sanas.tar) |

Dataset: Cifar10
| Model | Method |  Acc  |  Params(MB) | Download |
|:---:|:--:|:--:|:--:|:--:|
|           Darts           |   -   |     97.135%         |        3.767         |  -  |
| Darts_SA(Based on Darts)  | SANAS |  97.276%(+0.141%)   |    3.344(-11.2%)     |  -  |

105
Note: The token of MobileNetV2_NAS is [4, 4, 5, 1, 1, 2, 1, 1, 0, 2, 6, 2, 0, 3, 4, 5, 0, 4, 5, 5, 1, 4, 8, 0, 0]. The token of Darts_SA is [5, 5, 0, 5, 5, 10, 7, 7, 5, 7, 7, 11, 10, 12, 10, 0, 5, 3, 10, 8].
C
ceci3 已提交
106 107


108
## 2. Object Detection
C
ceci3 已提交
109

110
### 2.1 Quantization
W
whs 已提交
111

112
Dataset: COCO 2017
W
whs 已提交
113

114 115 116 117 118 119 120 121 122 123
|              Model              |  Method  | Dataset | Image/GPU | Input 608 Box AP | Input 416 Box AP | Input 320 Box AP | Model Size(MB) | TensorRT latency(V100, ms) |  Download  |
| :----------------------------: | :---------: | :----: | :-------: | :------------: | :------------: | :------------: | :------------: | :----------: |:----------: |
|      MobileNet-V1-YOLOv3       |      -      |  COCO  |     8     |      29.3      |      29.3      |      27.1      |       95       |  - | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
|      MobileNet-V1-YOLOv3       | quant_post  |  COCO  |     8     |     27.9 (-1.4)|    28.0 (-1.3)      |    26.0 (-1.0) |       25       | -  | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_quant_post.tar) |
|      MobileNet-V1-YOLOv3       | quant_aware |  COCO  |     8     |     28.1 (-1.2)|  28.2 (-1.1)      |    25.8 (-1.2) |       26.3     | -  | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenet_coco_quant_aware.tar) |
|      R34-YOLOv3                |      -      |  COCO  |     8     |      36.2      |      34.3      |      31.4      |       162       |  - | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
|      R34-YOLOv3                | quant_post  |  COCO  |     8     | 35.7 (-0.5)    |      -         |      -         |       42.7      |  - | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r34_coco_quant_post.tar) |
|      R34-YOLOv3                | quant_aware |  COCO  |     8     |  35.2 (-1.0)   | 33.3 (-1.0)    |     30.3 (-1.1)|       44       |  - | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r34_coco_quant_aware.tar) |
| R50-dcn-YOLOv3 obj365_pretrain |      -      |  COCO  |     8     |      41.4      |       -      |       -       |       177       | 18.56  |[model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_pretrained_coco.tar) |
| R50-dcn-YOLOv3 obj365_pretrain | quant_aware |  COCO  |     8     |   40.6 (-0.8)  |       37.5   |       34.1    |       66       |  14.64 | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_quant_aware.tar) |
W
whs 已提交
124 125 126



127
Dataset:WIDER-FACE
W
whs 已提交
128 129 130



131 132 133 134 135 136 137 138 139 140 141
|     Model      |   Method    | Image/GPU | Input Size |        Easy/Medium/Hard         | Model Size(MB) |                           Download                           |
| :------------: | :---------: | :-------: | :--------: | :-----------------------------: | :--------------: | :----------------------------------------------------------: |
|   BlazeFace    |      -      |     8     |    640     |         91.5/89.2/79.7          |       815        | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_original.tar) |
|   BlazeFace    | quant_post  |     8     |    640     | 87.8/85.1/74.9 (-3.7/-4.1/-4.8) |       228        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_origin_quant_post.tar) |
|   BlazeFace    | quant_aware |     8     |    640     | 90.5/87.9/77.6 (-1.0/-1.3/-2.1) |       228        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_origin_quant_aware.tar) |
| BlazeFace-Lite |      -      |     8     |    640     |         90.9/88.5/78.1          |       711        | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_lite.tar) |
| BlazeFace-Lite | quant_post  |     8     |    640     | 89.4/86.7/75.7 (-1.5/-1.8/-2.4) |       211        | [model]((https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_lite_quant_post.tar)) |
| BlazeFace-Lite | quant_aware |     8     |    640     | 89.7/87.3/77.0 (-1.2/-1.2/-1.1) |       211        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_lite_quant_aware.tar) |
| BlazeFace-NAS  |      -      |     8     |    640     |         83.7/80.7/65.8          |       244        | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas.tar) |
| BlazeFace-NAS  | quant_post  |     8     |    640     | 81.6/78.3/63.6 (-2.1/-2.4/-2.2) |        71        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_nas_quant_post.tar) |
| BlazeFace-NAS  | quant_aware |     8     |    640     | 83.1/79.7/64.2 (-0.6/-1.0/-1.6) |        71        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_nas_quant_aware.tar) |
W
whs 已提交
142

143
### 2.2 Pruning
W
whs 已提交
144

145
Dataset:Pasacl VOC & COCO 2017
W
whs 已提交
146

147 148 149 150 151 152 153 154 155 156 157 158
|             Model              |      Method       |  Dataset   | Image/GPU | Input 608 Box AP | Input 416 Box AP | Input 320 Box AP | Model Size(MB) | GFLOPs (608*608) |                           Download                           |
| :----------------------------: | :---------------: | :--------: | :-------: | :--------------: | :--------------: | :--------------: | :------------: | :--------------: | :----------------------------------------------------------: |
|      MobileNet-V1-YOLOv3       |     Baseline      | Pascal VOC |     8     |       76.2       |       76.7       |       75.3       |       94       |      40.49       | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
|      MobileNet-V1-YOLOv3       | sensitive -52.88% | Pascal VOC |     8     |   77.6 (+1.4)    |    77.7 (1.0)    |   75.5 (+0.2)    |       31       |      19.08       | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenet_v1_voc_prune.tar) |
|      MobileNet-V1-YOLOv3       |         -         |    COCO    |     8     |       29.3       |       29.3       |       27.0       |       95       |      41.35       | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
|      MobileNet-V1-YOLOv3       | sensitive -51.77% |    COCO    |     8     |   26.0 (-3.3)    |   25.1 (-4.2)    |   22.6 (-4.4)    |       32       |      19.94       | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenet_v1_prune.tar) |
|         R50-dcn-YOLOv3         |         -         |    COCO    |     8     |       39.1       |        -         |        -         |      177       |      89.60       | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn.tar) |
|         R50-dcn-YOLOv3         | sensitive -9.37%  |    COCO    |     8     |   39.3 (+0.2)    |        -         |        -         |      150       |      81.20       | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_prune.tar) |
|         R50-dcn-YOLOv3         | sensitive -24.68% |    COCO    |     8     |   37.3 (-1.8)    |        -         |        -         |      113       |      67.48       | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_prune578.tar) |
| R50-dcn-YOLOv3 obj365_pretrain |         -         |    COCO    |     8     |       41.4       |        -         |        -         |      177       |      89.60       | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_pretrained_coco.tar) |
| R50-dcn-YOLOv3 obj365_pretrain | sensitive -9.37%  |    COCO    |     8     |   40.5 (-0.9)    |        -         |        -         |      150       |      81.20       | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_prune.tar) |
| R50-dcn-YOLOv3 obj365_pretrain | sensitive -24.68% |    COCO    |     8     |   37.8 (-3.3)    |        -         |        -         |      113       |      67.48       | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_prune578.tar) |
W
whs 已提交
159

160
### 2.3 Distillation
W
whs 已提交
161

162
Dataset:Pasacl VOC & COCO 2017
W
whs 已提交
163 164


165 166 167 168 169 170 171 172
|        Model        |         Method          |  Dataset   | Image/GPU | Input 608 Box AP | Input 416 Box AP | Input 320 Box AP | Model Size(MB) |                           Download                           |
| :-----------------: | :---------------------: | :--------: | :-------: | :--------------: | :--------------: | :--------------: | :--------------: | :----------------------------------------------------------: |
| MobileNet-V1-YOLOv3 |            -            | Pascal VOC |     8     |       76.2       |       76.7       |       75.3       |        94        | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
|   ResNet34-YOLOv3   |            -            | Pascal VOC |     8     |       82.6       |       81.9       |       80.1       |       162        | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) |
| MobileNet-V1-YOLOv3 | ResNet34-YOLOv3 distill | Pascal VOC |     8     |   79.0 (+2.8)    |   78.2 (+1.5)    |   75.5 (+0.2)    |        94        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_voc_distilled.tar) |
| MobileNet-V1-YOLOv3 |            -            |    COCO    |     8     |       29.3       |       29.3       |       27.0       |        95        | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
|   ResNet34-YOLOv3   |            -            |    COCO    |     8     |       36.2       |       34.3       |       31.4       |       163        | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
| MobileNet-V1-YOLOv3 | ResNet34-YOLOv3 distill |    COCO    |     8     |   31.4 (+2.1)    |   30.0 (+0.7)    |   27.1 (+0.1)    |        95        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_distilled.tar) |
W
whs 已提交
173 174


C
ceci3 已提交
175 176 177 178 179 180 181 182
### 2.4 NAS

Dataset: WIDER-FACE

|      Model      |  Method   | Image/GPU | Input size |        Easy/Medium/Hard         |  volume(KB) |    latency(ms)|                         Download                             |
| :------------: | :---------: | :-------: | :------: | :-----------------------------: | :------------: | :------------: | :----------------------------------------------------------: |
|   BlazeFace    |      -      |     8     |   640    |         91.5/89.2/79.7          |      815       |       71.862     | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_original.tar) |
| BlazeFace-NAS  |      -      |     8     |   640    |         83.7/80.7/65.8          |      244       |       21.117     |[model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas.tar) |
C
ceci3 已提交
183
| BlazeFace-NASV2 |    SANAS    |     8     |   640    |         87.0/83.7/68.5          |      389       |       22.558     | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas2.tar) |
C
ceci3 已提交
184

C
ceci3 已提交
185
Note: latency is based on latency_855.txt, the file is test on 855 by PaddleLite。The config of BlazeFace-NASV2 is in [there](https://github.com/PaddlePaddle/PaddleDetection/blob/master/configs/face_detection/blazeface_nas_v2.yml).
W
whs 已提交
186

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
## 3. Image Segmentation
Dataset:Cityscapes

### 3.1 Quantization

|         Model          |   Method    |     mIoU      | Model Size(MB) |                           Download                           |
| :--------------------: | :---------: | :-----------: | :--------------: | :----------------------------------------------------------: |
| DeepLabv3+/MobileNetv1 |      -      |     63.26     |       6.6        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv1.tar ) |
| DeepLabv3+/MobileNetv1 | quant_post  | 58.63 (-4.63) |       1.8        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv1_2049x1025_quant_post.tar) |
| DeepLabv3+/MobileNetv1 | quant_aware | 62.03 (-1.23) |       1.8        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv1_2049x1025_quant_aware.tar) |
| DeepLabv3+/MobileNetv2 |      -      |     69.81     |       7.4        | [model](https://paddleseg.bj.bcebos.com/models/mobilenet_cityscapes.tgz) |
| DeepLabv3+/MobileNetv2 | quant_post  | 67.59 (-2.22) |       2.1        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv2_2049x1025_quant_post.tar) |
| DeepLabv3+/MobileNetv2 | quant_aware | 68.33 (-1.48) |       2.1        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv2_2049x1025_quant_aware.tar) |

Image segmentation model PaddleLite latency (ms), input size 769x769

| Device       | Model                  | Method        | armv7 Thread 1 | armv7 Thread 2 | armv7 Thread 4 | armv8 Thread 1 | armv8 Thread 2 | armv8 Thread 4 |
| ------------ | ---------------------- | ------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- |
| Qualcomm 835 | Deeplabv3- MobileNetV1 | FP32 baseline | 1227.9894      | 734.1922       | 527.9592       | 1109.96        | 699.3818       | 479.0818       |
| Qualcomm 835 | Deeplabv3- MobileNetV1 | quant_aware   | 848.6544       | 512.785        | 382.9915       | 752.3573       | 455.0901       | 307.8808       |
| Qualcomm 835 | Deeplabv3- MobileNetV1 | quant_post    | 840.2323       | 510.103        | 371.9315       | 748.9401       | 452.1745       | 309.2084       |
| Qualcomm 835 | Deeplabv3-MobileNetV2  | FP32 baseline | 1282.8126      | 793.2064       | 653.6538       | 1193.9908      | 737.1827       | 593.4522       |
| Qualcomm 835 | Deeplabv3-MobileNetV2  | quant_aware   | 976.0495       | 659.0541       | 513.4279       | 892.1468       | 582.9847       | 484.7512       |
| Qualcomm 835 | Deeplabv3-MobileNetV2  | quant_post    | 981.44         | 658.4969       | 538.6166       | 885.3273       | 586.1284       | 484.0018       |
| Qualcomm 855 | Deeplabv3- MobileNetV1 | FP32 baseline | 568.8748       | 339.8578       | 278.6316       | 420.6031       | 281.3197       | 217.5222       |
| Qualcomm 855 | Deeplabv3- MobileNetV1 | quant_aware   | 608.7578       | 347.2087       | 260.653        | 241.2394       | 177.3456       | 143.9178       |
| Qualcomm 855 | Deeplabv3- MobileNetV1 | quant_post    | 609.0142       | 347.3784       | 259.9825       | 239.4103       | 180.1894       | 139.9178       |
| Qualcomm 855 | Deeplabv3-MobileNetV2  | FP32 baseline | 639.4425       | 390.1851       | 322.7014       | 477.7667       | 339.7411       | 262.2847       |
| Qualcomm 855 | Deeplabv3-MobileNetV2  | quant_aware   | 703.7275       | 497.689        | 417.1296       | 394.3586       | 300.2503       | 239.9204       |
| Qualcomm 855 | Deeplabv3-MobileNetV2  | quant_post    | 705.7589       | 474.4076       | 427.2951       | 394.8352       | 297.4035       | 264.6724       |
| Kirin 970    | Deeplabv3- MobileNetV1 | FP32 baseline | 1682.1792      | 1437.9774      | 1181.0246      | 1261.6739      | 1068.6537      | 690.8225       |
| Kirin 970    | Deeplabv3- MobileNetV1 | quant_aware   | 1062.3394      | 1248.1014      | 878.3157       | 774.6356       | 710.6277       | 528.5376       |
| Kirin 970    | Deeplabv3- MobileNetV1 | quant_post    | 1109.1917      | 1339.6218      | 866.3587       | 771.5164       | 716.5255       | 500.6497       |
| Kirin 970    | Deeplabv3-MobileNetV2  | FP32 baseline | 1771.1301      | 1746.0569      | 1222.4805      | 1448.9739      | 1192.4491      | 760.606        |
| Kirin 970    | Deeplabv3-MobileNetV2  | quant_aware   | 1320.2905      | 921.4522       | 676.0732       | 1145.8801      | 821.5685       | 590.1713       |
| Kirin 970    | Deeplabv3-MobileNetV2  | quant_post    | 1320.386       | 918.5328       | 672.2481       | 1020.753       | 820.094        | 591.4114       |





### 3.2 Pruning

|   Model   |      Method       |     mIoU      | Model Size(MB) | GFLOPs |                           Download                           |
| :-------: | :---------------: | :-----------: | :--------------: | :----: | :----------------------------------------------------------: |
| fast-scnn |     baseline      |     69.64     |        11        | 14.41  | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/fast_scnn_cityscape.tar) |
| fast-scnn | uniform  -17.07%  | 69.58 (-0.06) |       8.5        | 11.95  | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/fast_scnn_cityscape_uniform-17.tar) |
| fast-scnn | sensitive -47.60% | 66.68 (-2.96) |       5.7        |  7.55  | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/fast_scnn_cityscape_sensitive-47.tar) |