未验证 提交 ff30867a 编写于 作者: W whs 提交者: GitHub

[cherry-pick] Cherry pick commits on model zoo (#140)

上级 e4fcfc88
此差异已折叠。
# 模型库
## 1. 图分类
## 1. 图分类
数据集:ImageNet1000类
......@@ -57,19 +57,26 @@
### 1.2 剪裁
| 模型 | 压缩方法 | Top-1/Top-5 Acc | 模型体积(MB) | GFLOPs | 下载 |
|:--:|:---:|:--:|:--:|:--:|:--:|
| MobileNetV1 | Baseline | 70.99%/89.68% | 17 | 1.11 | [下载链接](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar) |
| MobileNetV1 | uniform -50% | 69.4%/88.66% (-1.59%/-1.02%) | 9 | 0.56 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_uniform-50.tar) |
| MobileNetV1 | sensitive -30% | 70.4%/89.3% (-0.59%/-0.38%) | 12 | 0.74 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_sensitive-30.tar) |
| MobileNetV1 | sensitive -50% | 69.8% / 88.9% (-1.19%/-0.78%) | 9 | 0.56 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_sensitive-50.tar) |
| MobileNetV2 | - | 72.15%/90.65% | 15 | 0.59 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) |
| MobileNetV2 | uniform -50% | 65.79%/86.11% (-6.35%/-4.47%) | 11 | 0.296 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV2_uniform-50.tar) |
| ResNet34 | - | 72.15%/90.65% | 84 | 7.36 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar) |
| ResNet34 | uniform -50% | 70.99%/89.95% (-1.36%/-0.87%) | 41 | 3.67 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet34_uniform-50.tar) |
| ResNet34 | auto -55.05% | 70.24%/89.63% (-2.04%/-1.06%) | 33 | 3.31 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet34_auto-55.tar) |
PaddleLite推理耗时说明:
环境:Qualcomm SnapDragon 845 + armv8
速度指标:Thread1/Thread2/Thread4耗时
PaddleLite版本: v2.3
| 模型 | 压缩方法 | Top-1/Top-5 Acc | 模型体积(MB) | GFLOPs |PaddleLite推理耗时|TensorRT推理速度(FPS)| 下载 |
|:--:|:---:|:--:|:--:|:--:|:--:|:--:|:--:|
| MobileNetV1 | Baseline | 70.99%/89.68% | 17 | 1.11 |66.052\35.8014\19.5762|-| [下载链接](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar) |
| MobileNetV1 | uniform -50% | 69.4%/88.66% (-1.59%/-1.02%) | 9 | 0.56 | 33.5636\18.6834\10.5076|-|[下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_uniform-50.tar) |
| MobileNetV1 | sensitive -30% | 70.4%/89.3% (-0.59%/-0.38%) | 12 | 0.74 | 46.5958\25.3098\13.6982|-|[下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_sensitive-30.tar) |
| MobileNetV1 | sensitive -50% | 69.8% / 88.9% (-1.19%/-0.78%) | 9 | 0.56 |37.9892\20.7882\11.3144|-| [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_sensitive-50.tar) |
| MobileNetV2 | - | 72.15%/90.65% | 15 | 0.59 |41.7874\23.375\13.3998|-| [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) |
| MobileNetV2 | uniform -50% | 65.79%/86.11% (-6.35%/-4.47%) | 11 | 0.296 |23.8842\13.8698\8.5572|-| [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV2_uniform-50.tar) |
| ResNet34 | - | 72.15%/90.65% | 84 | 7.36 |217.808\139.943\96.7504|342.32| [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar) |
| ResNet34 | uniform -50% | 70.99%/89.95% (-1.36%/-0.87%) | 41 | 3.67 |114.787\75.0332\51.8438|452.41| [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet34_uniform-50.tar) |
| ResNet34 | auto -55.05% | 70.24%/89.63% (-2.04%/-1.06%) | 33 | 3.31 |105.924\69.3222\48.0246|457.25| [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet34_auto-55.tar) |
### 1.3 蒸馏
......@@ -85,9 +92,7 @@
|ResNet101|teacher|77.56%/93.64%| 173 | [下载链接](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar) |
| ResNet50 | ResNet101 distill | 77.29%/93.65% (+0.79%/+0.65%) | 99 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet50_distilled.tar) |
!!! note "Note"
<a name="trans1">[1]</a>:带_vd后缀代表该预训练模型使用了Mixup,Mixup相关介绍参考[mixup: Beyond Empirical Risk Minimization](https://arxiv.org/abs/1710.09412)
注意:带"_vd"后缀代表该预训练模型使用了Mixup,Mixup相关介绍参考[mixup: Beyond Empirical Risk Minimization](https://arxiv.org/abs/1710.09412)
### 1.4 搜索
......@@ -99,6 +104,7 @@
| MobileNetV2 | SANAS | 71.518%/90.208% (-0.632%/-0.442%) | 14 | 0.295 | [下载链接](https://paddlemodels.cdn.bcebos.com/PaddleSlim/MobileNetV2_sanas.tar) |
数据集: Cifar10
| 模型 |压缩方法 | Acc | 模型参数(MB) | 下载 |
|:---:|:--:|:--:|:--:|:--:|
| Darts | - | 97.135% | 3.767 | - |
......@@ -107,8 +113,6 @@
Note: MobileNetV2_NAS 的token是:[4, 4, 5, 1, 1, 2, 1, 1, 0, 2, 6, 2, 0, 3, 4, 5, 0, 4, 5, 5, 1, 4, 8, 0, 0]. Darts_SA的token是:[5, 5, 0, 5, 5, 10, 7, 7, 5, 7, 7, 11, 10, 12, 10, 0, 5, 3, 10, 8].
## 2. 目标检测
### 2.1 量化
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册