cls.py 5.9 KB
Newer Older
B
Bai Yifan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT fine-tuning in Paddle Dygraph Mode."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import six
import sys
if six.PY2:
    reload(sys)
    sys.setdefaultencoding('utf8')
import ast
import time
import argparse
import numpy as np
import multiprocessing
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph import to_variable, Layer, Linear
B
baiyfbupt 已提交
34
from paddle.fluid.dygraph.base import to_variable
B
Bai Yifan 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
from .reader.cls import *
from .model.bert import BertModelLayer
from .optimization import Optimizer
from .utils.init import init_from_static_model
from paddleslim.teachers.bert import BERTClassifier

__all__ = ["AdaBERTClassifier"]


class AdaBERTClassifier(Layer):
    def __init__(self,
                 num_labels,
                 n_layer=8,
                 emb_size=768,
                 hidden_size=768,
                 gamma=0.8,
                 beta=4,
B
baiyfbupt 已提交
52
                 task_name='mnli',
B
Bai Yifan 已提交
53 54 55 56
                 conv_type="conv_bn",
                 search_layer=False,
                 teacher_model=None,
                 data_dir=None,
W
whs 已提交
57 58 59 60
                 use_fixed_gumbel=False,
                 gumbel_alphas=None,
                 fix_emb=False,
                 t=5.0):
B
Bai Yifan 已提交
61 62 63 64 65 66 67 68 69 70 71 72
        super(AdaBERTClassifier, self).__init__()
        self._n_layer = n_layer
        self._num_labels = num_labels
        self._emb_size = emb_size
        self._hidden_size = hidden_size
        self._gamma = gamma
        self._beta = beta
        self._conv_type = conv_type
        self._search_layer = search_layer
        self._teacher_model = teacher_model
        self._data_dir = data_dir
        self.use_fixed_gumbel = use_fixed_gumbel
73

W
whs 已提交
74
        self.T = t
B
baiyfbupt 已提交
75 76 77 78
        print(
            "----------------------load teacher model and test----------------------------------------"
        )
        self.teacher = BERTClassifier(
B
baiyfbupt 已提交
79
            num_labels, task_name=task_name, model_path=self._teacher_model)
B
baiyfbupt 已提交
80
        # global setting, will be overwritten when training(about 1% acc loss)
B
baiyfbupt 已提交
81
        self.teacher.eval()
W
whs 已提交
82
        self.teacher.test(self._data_dir)
B
baiyfbupt 已提交
83 84 85
        print(
            "----------------------finish load teacher model and test----------------------------------------"
        )
B
Bai Yifan 已提交
86
        self.student = BertModelLayer(
B
baiyfbupt 已提交
87
            num_labels=num_labels,
B
Bai Yifan 已提交
88 89 90 91 92
            n_layer=self._n_layer,
            emb_size=self._emb_size,
            hidden_size=self._hidden_size,
            conv_type=self._conv_type,
            search_layer=self._search_layer,
W
whs 已提交
93 94 95
            use_fixed_gumbel=self.use_fixed_gumbel,
            gumbel_alphas=gumbel_alphas)

B
baiyfbupt 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
        fix_emb = False
        for s_emb, t_emb in zip(self.student.emb_names(),
                                self.teacher.emb_names()):
            t_emb.stop_gradient = True
            if fix_emb:
                s_emb.stop_gradient = True
            print(
                "Assigning embedding[{}] from teacher to embedding[{}] in student.".
                format(t_emb.name, s_emb.name))
            fluid.layers.assign(input=t_emb, output=s_emb)
            print(
                "Assigned embedding[{}] from teacher to embedding[{}] in student.".
                format(t_emb.name, s_emb.name))

    def forward(self, data_ids, epoch):
B
baiyfbupt 已提交
111
        return self.student(data_ids, epoch)
B
Bai Yifan 已提交
112 113 114 115

    def arch_parameters(self):
        return self.student.arch_parameters()

B
baiyfbupt 已提交
116
    def loss(self, data_ids, epoch):
B
Bai Yifan 已提交
117 118
        labels = data_ids[4]

B
baiyfbupt 已提交
119
        s_logits = self.student(data_ids, epoch)
B
baiyfbupt 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162

        t_enc_outputs, t_logits, t_losses, t_accs, _ = self.teacher(data_ids)

        #define kd loss
        kd_weights = []
        for i in range(len(s_logits)):
            j = int(np.ceil(i * (float(len(t_logits)) / len(s_logits))))
            kd_weights.append(t_losses[j].numpy())

        kd_weights = np.array(kd_weights)
        kd_weights = np.squeeze(kd_weights)
        kd_weights = to_variable(kd_weights)
        kd_weights = fluid.layers.softmax(-kd_weights)

        kd_losses = []
        for i in range(len(s_logits)):
            j = int(np.ceil(i * (float(len(t_logits)) / len(s_logits))))
            t_logit = t_logits[j]
            s_logit = s_logits[i]
            t_logit.stop_gradient = True
            t_probs = fluid.layers.softmax(t_logit)  # P_j^T
            s_probs = fluid.layers.softmax(s_logit / self.T)  #P_j^S
            #kd_loss = -t_probs * fluid.layers.log(s_probs)
            kd_loss = fluid.layers.cross_entropy(
                input=s_probs, label=t_probs, soft_label=True)
            kd_loss = fluid.layers.reduce_mean(kd_loss)
            kd_loss = fluid.layers.scale(kd_loss, scale=kd_weights[i])
            kd_losses.append(kd_loss)
        kd_loss = fluid.layers.sum(kd_losses)

        losses = []
        for logit in s_logits:
            ce_loss, probs = fluid.layers.softmax_with_cross_entropy(
                logits=logit, label=labels, return_softmax=True)
            loss = fluid.layers.mean(x=ce_loss)
            losses.append(loss)

            num_seqs = fluid.layers.create_tensor(dtype='int64')
            accuracy = fluid.layers.accuracy(
                input=probs, label=labels, total=num_seqs)
        ce_loss = fluid.layers.sum(losses)

        total_loss = (1 - self._gamma) * ce_loss + self._gamma * kd_loss
B
Bai Yifan 已提交
163

B
baiyfbupt 已提交
164
        return total_loss, accuracy, ce_loss, kd_loss, s_logits