Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
ec96bbf2
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
大约 2 年 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ec96bbf2
编写于
6月 28, 2020
作者:
B
baiyfbupt
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
adabert multi-gpus
上级
491c3489
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
377 addition
and
277 deletion
+377
-277
demo/bert/search_bert.py
demo/bert/search_bert.py
+0
-56
demo/bert/train_cell_base.py
demo/bert/train_cell_base.py
+158
-98
paddleslim/dist/dml.py
paddleslim/dist/dml.py
+1
-2
paddleslim/nas/darts/architect_for_bert.py
paddleslim/nas/darts/architect_for_bert.py
+4
-4
paddleslim/nas/darts/search_space/conv_bert/cls.py
paddleslim/nas/darts/search_space/conv_bert/cls.py
+77
-35
paddleslim/nas/darts/search_space/conv_bert/model/bert.py
paddleslim/nas/darts/search_space/conv_bert/model/bert.py
+12
-7
paddleslim/nas/darts/search_space/conv_bert/model/transformer_encoder.py
...darts/search_space/conv_bert/model/transformer_encoder.py
+85
-62
paddleslim/teachers/bert/cls.py
paddleslim/teachers/bert/cls.py
+6
-2
paddleslim/teachers/bert/model/bert.py
paddleslim/teachers/bert/model/bert.py
+4
-0
paddleslim/teachers/bert/model/cls.py
paddleslim/teachers/bert/model/cls.py
+17
-1
paddleslim/teachers/bert/reader/cls.py
paddleslim/teachers/bert/reader/cls.py
+13
-10
未找到文件。
demo/bert/search_bert.py
已删除
100644 → 0
浏览文件 @
491c3489
import
paddle.fluid
as
fluid
from
paddleslim.teachers.bert.reader.cls
import
*
from
paddleslim.nas.darts.search_space
import
AdaBERTClassifier
from
paddleslim.nas.darts
import
DARTSearch
def
main
():
place
=
fluid
.
CUDAPlace
(
0
)
BERT_BASE_PATH
=
"./data/pretrained_models/uncased_L-12_H-768_A-12/"
bert_config_path
=
BERT_BASE_PATH
+
"/bert_config.json"
vocab_path
=
BERT_BASE_PATH
+
"/vocab.txt"
data_dir
=
"./data/glue_data/MNLI/"
max_seq_len
=
512
do_lower_case
=
True
batch_size
=
32
epoch
=
30
processor
=
MnliProcessor
(
data_dir
=
data_dir
,
vocab_path
=
vocab_path
,
max_seq_len
=
max_seq_len
,
do_lower_case
=
do_lower_case
,
in_tokens
=
False
)
train_reader
=
processor
.
data_generator
(
batch_size
=
batch_size
,
phase
=
'train'
,
epoch
=
epoch
,
dev_count
=
1
,
shuffle
=
True
)
val_reader
=
processor
.
data_generator
(
batch_size
=
batch_size
,
phase
=
'train'
,
epoch
=
epoch
,
dev_count
=
1
,
shuffle
=
True
)
with
fluid
.
dygraph
.
guard
(
place
):
model
=
AdaBERTClassifier
(
3
,
teacher_model
=
"/work/PaddleSlim/demo/bert_1/checkpoints/steps_23000"
)
searcher
=
DARTSearch
(
model
,
train_reader
,
val_reader
,
batchsize
=
batch_size
,
num_epochs
=
epoch
,
log_freq
=
10
)
searcher
.
train
()
if
__name__
==
'__main__'
:
main
()
demo/bert/train_cell_base.py
浏览文件 @
ec96bbf2
...
@@ -3,7 +3,6 @@ from itertools import izip
...
@@ -3,7 +3,6 @@ from itertools import izip
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddleslim.teachers.bert.reader.cls
import
*
from
paddleslim.teachers.bert.reader.cls
import
*
from
paddleslim.nas.darts.search_space
import
AdaBERTClassifier
from
paddleslim.nas.darts.search_space
import
AdaBERTClassifier
from
paddleslim.nas.darts.architect_for_bert
import
Architect
import
logging
import
logging
from
paddleslim.common
import
AvgrageMeter
,
get_logger
from
paddleslim.common
import
AvgrageMeter
,
get_logger
...
@@ -18,79 +17,94 @@ def count_parameters_in_MB(all_params):
...
@@ -18,79 +17,94 @@ def count_parameters_in_MB(all_params):
return
parameters_number
/
1e6
return
parameters_number
/
1e6
def
model_loss
(
model
,
data_ids
):
def
train_one_epoch
(
model
,
train_loader
,
valid_loader
,
optimizer
,
# src_ids = data_ids[0]
arch_optimizer
,
epoch
,
use_data_parallel
,
log_freq
):
# position_ids = data_ids[1]
total_losses
=
AvgrageMeter
()
# sentence_ids = data_ids[2]
# input_mask = data_ids[3]
labels
=
data_ids
[
4
]
labels
.
stop_gradient
=
True
enc_output
=
model
(
data_ids
)
ce_loss
,
probs
=
fluid
.
layers
.
softmax_with_cross_entropy
(
logits
=
enc_output
,
label
=
labels
,
return_softmax
=
True
)
loss
=
fluid
.
layers
.
mean
(
x
=
ce_loss
)
num_seqs
=
fluid
.
layers
.
create_tensor
(
dtype
=
'int64'
)
accuracy
=
fluid
.
layers
.
accuracy
(
input
=
probs
,
label
=
labels
,
total
=
num_seqs
)
return
loss
,
accuracy
def
train_one_epoch
(
model
,
architect
,
train_loader
,
valid_loader
,
optimizer
,
epoch
,
use_data_parallel
,
log_freq
):
ce_losses
=
AvgrageMeter
()
accs
=
AvgrageMeter
()
accs
=
AvgrageMeter
()
ce_losses
=
AvgrageMeter
()
kd_losses
=
AvgrageMeter
()
val_accs
=
AvgrageMeter
()
model
.
train
()
model
.
train
()
step_id
=
0
step_id
=
0
for
train_data
,
valid_data
in
izip
(
train_loader
(),
valid_loader
):
for
train_data
,
valid_data
in
izip
(
train_loader
(),
valid_loader
()):
architect
.
step
(
train_data
,
valid_data
)
#for train_data in train_loader():
loss
,
acc
=
model_loss
(
model
,
train_data
)
batch_size
=
train_data
[
0
].
shape
[
0
]
try
:
total_loss
,
acc
,
ce_loss
,
kd_loss
,
_
=
model
.
_layers
.
loss
(
train_data
,
epoch
)
except
:
total_loss
,
acc
,
ce_loss
,
kd_loss
,
_
=
model
.
loss
(
train_data
,
epoch
)
if
use_data_parallel
:
if
use_data_parallel
:
loss
=
model
.
scale_loss
(
loss
)
total_loss
=
model
.
scale_loss
(
total_
loss
)
loss
.
backward
()
total_
loss
.
backward
()
model
.
apply_collective_grads
()
model
.
apply_collective_grads
()
else
:
else
:
loss
.
backward
()
total_loss
.
backward
()
optimizer
.
minimize
(
total_loss
)
optimizer
.
minimize
(
loss
)
model
.
clear_gradients
()
model
.
clear_gradients
()
total_losses
.
update
(
total_loss
.
numpy
(),
batch_size
)
batch_size
=
train_data
[
0
].
shape
[
0
]
ce_losses
.
update
(
loss
.
numpy
(),
batch_size
)
accs
.
update
(
acc
.
numpy
(),
batch_size
)
accs
.
update
(
acc
.
numpy
(),
batch_size
)
ce_losses
.
update
(
ce_loss
.
numpy
(),
batch_size
)
kd_losses
.
update
(
kd_loss
.
numpy
(),
batch_size
)
try
:
arch_loss
,
_
,
_
,
_
,
arch_logits
=
model
.
_layers
.
loss
(
valid_data
,
epoch
)
except
:
arch_loss
,
_
,
_
,
_
,
arch_logits
=
model
.
loss
(
valid_data
,
epoch
)
if
use_data_parallel
:
arch_loss
=
model
.
scale_loss
(
arch_loss
)
arch_loss
.
backward
()
model
.
apply_collective_grads
()
else
:
arch_loss
.
backward
()
arch_optimizer
.
minimize
(
arch_loss
)
arch_optimizer
.
clear_gradients
()
probs
=
fluid
.
layers
.
softmax
(
arch_logits
[
-
1
])
val_acc
=
fluid
.
layers
.
accuracy
(
input
=
probs
,
label
=
valid_data
[
4
])
val_accs
.
update
(
val_acc
.
numpy
(),
batch_size
)
if
step_id
%
log_freq
==
0
:
if
step_id
%
log_freq
==
0
:
logger
.
info
(
logger
.
info
(
"Train Epoch {}, Step {}, Lr {:.6f}
loss {:.6f}; acc:
{:.6f};"
.
"Train Epoch {}, Step {}, Lr {:.6f}
total_loss {:.6f}; ce_loss {:.6f}, kd_loss {:.6f}, train_acc {:.6f}, valid_acc
{:.6f};"
.
format
(
epoch
,
step_id
,
format
(
epoch
,
step_id
,
optimizer
.
current_step_lr
(),
ce_losses
.
avg
[
0
],
accs
.
avg
[
optimizer
.
current_step_lr
(),
total_losses
.
avg
[
0
]))
0
],
ce_losses
.
avg
[
0
],
kd_losses
.
avg
[
0
],
accs
.
avg
[
0
],
val_accs
.
avg
[
0
]))
step_id
+=
1
step_id
+=
1
def
valid_one_epoch
(
model
,
valid_loader
,
epoch
,
log_freq
):
def
valid_one_epoch
(
model
,
valid_loader
,
epoch
,
log_freq
):
ce_losses
=
AvgrageMeter
()
accs
=
AvgrageMeter
()
accs
=
AvgrageMeter
()
ce_losses
=
AvgrageMeter
()
model
.
eval
()
model
.
eval
()
step_id
=
0
step_id
=
0
for
valid_data
in
valid_loader
():
for
valid_data
in
valid_loader
():
loss
,
acc
=
model_loss
(
model
,
valid_data
)
try
:
loss
,
acc
,
ce_loss
,
_
,
_
=
model
.
_layers
.
loss
(
valid_data
,
epoch
)
except
:
loss
,
acc
,
ce_loss
,
_
,
_
=
model
.
loss
(
valid_data
,
epoch
)
batch_size
=
valid_data
[
0
].
shape
[
0
]
batch_size
=
valid_data
[
0
].
shape
[
0
]
ce_losses
.
update
(
loss
.
numpy
(),
batch_size
)
ce_losses
.
update
(
ce_
loss
.
numpy
(),
batch_size
)
accs
.
update
(
acc
.
numpy
(),
batch_size
)
accs
.
update
(
acc
.
numpy
(),
batch_size
)
if
step_id
%
log_freq
==
0
:
#
if step_id % log_freq == 0:
logger
.
info
(
"Valid Epoch {}, Step {},
loss {:.6f}; acc: {:.6f};"
.
# logger.info("Valid Epoch {}, Step {}, ce_
loss {:.6f}; acc: {:.6f};".
format
(
epoch
,
step_id
,
ce_losses
.
avg
[
0
],
accs
.
avg
[
0
]))
#
format(epoch, step_id, ce_losses.avg[0], accs.avg[0]))
step_id
+=
1
step_id
+=
1
return
ce_losses
.
avg
[
0
],
accs
.
avg
[
0
]
def
main
():
def
main
():
use_data_parallel
=
False
# whether use multi-gpus
use_data_parallel
=
True
place
=
fluid
.
CUDAPlace
(
fluid
.
dygraph
.
parallel
.
Env
(
place
=
fluid
.
CUDAPlace
(
fluid
.
dygraph
.
parallel
.
Env
(
).
dev_id
)
if
use_data_parallel
else
fluid
.
CUDAPlace
(
0
)
).
dev_id
)
if
use_data_parallel
else
fluid
.
CUDAPlace
(
0
)
...
@@ -98,44 +112,31 @@ def main():
...
@@ -98,44 +112,31 @@ def main():
bert_config_path
=
BERT_BASE_PATH
+
"/bert_config.json"
bert_config_path
=
BERT_BASE_PATH
+
"/bert_config.json"
vocab_path
=
BERT_BASE_PATH
+
"/vocab.txt"
vocab_path
=
BERT_BASE_PATH
+
"/vocab.txt"
data_dir
=
"./data/glue_data/MNLI/"
data_dir
=
"./data/glue_data/MNLI/"
teacher_model_dir
=
"./teacher_model/steps_23000"
teacher_model_dir
=
"./data/teacher_model/steps_23000"
num_samples
=
392702
max_seq_len
=
128
do_lower_case
=
True
do_lower_case
=
True
batch_size
=
128
#num_samples = 392702
num_samples
=
8016987
max_seq_len
=
128
batch_size
=
64
hidden_size
=
768
hidden_size
=
768
emb_size
=
768
emb_size
=
768
max_layer
=
8
max_layer
=
8
epoch
=
80
epoch
=
80
log_freq
=
10
log_freq
=
10
use_fixed_gumbel
=
True
device_num
=
fluid
.
dygraph
.
parallel
.
Env
().
nranks
processor
=
MnliProcessor
(
search
=
True
data_dir
=
data_dir
,
vocab_path
=
vocab_path
,
if
search
:
max_seq_len
=
max_seq_len
,
use_fixed_gumbel
=
False
do_lower_case
=
do_lower_case
,
train_phase
=
"search_train"
in_tokens
=
False
)
val_phase
=
"search_valid"
step_per_epoch
=
int
(
num_samples
/
((
batch_size
*
0.5
)
*
device_num
))
train_reader
=
processor
.
data_generator
(
else
:
batch_size
=
batch_size
,
use_fixed_gumbel
=
True
phase
=
'search_train'
,
train_phase
=
"train"
epoch
=
1
,
val_phase
=
"dev"
dev_count
=
1
,
step_per_epoch
=
int
(
num_samples
/
(
batch_size
*
device_num
))
shuffle
=
True
)
val_reader
=
processor
.
data_generator
(
batch_size
=
batch_size
,
phase
=
'search_valid'
,
epoch
=
1
,
dev_count
=
1
,
shuffle
=
True
)
if
use_data_parallel
:
train_reader
=
fluid
.
contrib
.
reader
.
distributed_batch_reader
(
train_reader
)
valid_reader
=
fluid
.
contrib
.
reader
.
distributed_batch_reader
(
valid_reader
)
with
fluid
.
dygraph
.
guard
(
place
):
with
fluid
.
dygraph
.
guard
(
place
):
model
=
AdaBERTClassifier
(
model
=
AdaBERTClassifier
(
...
@@ -147,47 +148,106 @@ def main():
...
@@ -147,47 +148,106 @@ def main():
data_dir
=
data_dir
,
data_dir
=
data_dir
,
use_fixed_gumbel
=
use_fixed_gumbel
)
use_fixed_gumbel
=
use_fixed_gumbel
)
if
use_data_parallel
:
strategy
=
fluid
.
dygraph
.
parallel
.
prepare_context
()
model
=
fluid
.
dygraph
.
parallel
.
DataParallel
(
model
,
strategy
)
device_num
=
fluid
.
dygraph
.
parallel
.
Env
().
nranks
step_per_epoch
=
int
(
num_samples
/
(
batch_size
*
device_num
))
learning_rate
=
fluid
.
dygraph
.
CosineDecay
(
2e-2
,
step_per_epoch
,
epoch
)
learning_rate
=
fluid
.
dygraph
.
CosineDecay
(
2e-2
,
step_per_epoch
,
epoch
)
model_parameters
=
[
model_parameters
=
[]
p
for
p
in
model
.
parameters
()
for
p
in
model
.
parameters
():
if
p
.
name
not
in
[
a
.
name
for
a
in
model
.
arch_parameters
()]
if
(
p
.
name
not
in
[
a
.
name
for
a
in
model
.
arch_parameters
()]
and
]
p
.
name
not
in
[
a
.
name
for
a
in
model
.
teacher
.
parameters
()]):
model_parameters
.
append
(
p
)
clip
=
fluid
.
clip
.
GradientClipByGlobalNorm
(
clip_norm
=
5.0
)
#
clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=5.0)
optimizer
=
fluid
.
optimizer
.
MomentumOptimizer
(
optimizer
=
fluid
.
optimizer
.
MomentumOptimizer
(
learning_rate
,
learning_rate
,
0.9
,
0.9
,
regularization
=
fluid
.
regularizer
.
L2DecayRegularizer
(
3e-4
),
regularization
=
fluid
.
regularizer
.
L2DecayRegularizer
(
3e-4
),
parameter_list
=
model_parameters
,
parameter_list
=
model_parameters
)
grad_clip
=
clip
)
# grad_clip=clip)
arch_optimizer
=
fluid
.
optimizer
.
Adam
(
3e-4
,
0.5
,
0.999
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
1e-3
),
parameter_list
=
model
.
arch_parameters
())
processor
=
MnliProcessor
(
data_dir
=
data_dir
,
vocab_path
=
vocab_path
,
max_seq_len
=
max_seq_len
,
do_lower_case
=
do_lower_case
,
in_tokens
=
False
)
train_reader
=
processor
.
data_generator
(
batch_size
=
batch_size
,
phase
=
train_phase
,
epoch
=
1
,
dev_count
=
1
,
shuffle
=
True
)
valid_reader
=
processor
.
data_generator
(
batch_size
=
batch_size
,
phase
=
val_phase
,
epoch
=
1
,
dev_count
=
1
,
shuffle
=
True
)
print
(
"train_data nums:"
,
processor
.
get_num_examples
(
train_phase
))
print
(
"valid_data nums:"
,
processor
.
get_num_examples
(
val_phase
))
print
(
"dev_data nums:"
,
processor
.
get_num_examples
(
"dev"
))
if
use_data_parallel
:
train_reader
=
fluid
.
contrib
.
reader
.
distributed_batch_reader
(
train_reader
)
valid_reader
=
fluid
.
contrib
.
reader
.
distributed_batch_reader
(
valid_reader
)
dev_reader
=
processor
.
data_generator
(
batch_size
=
batch_size
,
phase
=
"dev"
,
epoch
=
1
,
dev_count
=
1
,
shuffle
=
False
)
train_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
train_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
capacity
=
1024
,
capacity
=
512
,
use_double_buffer
=
True
,
use_double_buffer
=
True
,
iterable
=
True
,
iterable
=
True
,
return_list
=
True
)
return_list
=
True
,
use_multiprocess
=
True
)
valid_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
valid_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
capacity
=
1024
,
capacity
=
512
,
use_double_buffer
=
True
,
iterable
=
True
,
return_list
=
True
,
use_multiprocess
=
True
)
dev_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
capacity
=
512
,
use_double_buffer
=
True
,
use_double_buffer
=
True
,
iterable
=
True
,
iterable
=
True
,
return_list
=
True
)
return_list
=
True
,
use_multiprocess
=
True
)
train_loader
.
set_batch_generator
(
train_reader
,
places
=
place
)
train_loader
.
set_batch_generator
(
train_reader
,
places
=
place
)
valid_loader
.
set_batch_generator
(
val_reader
,
places
=
place
)
valid_loader
.
set_batch_generator
(
valid_reader
,
places
=
place
)
dev_loader
.
set_batch_generator
(
dev_reader
,
places
=
place
)
architect
=
Architect
(
model
,
learning_rate
,
3e-4
,
place
,
False
)
if
use_data_parallel
:
strategy
=
fluid
.
dygraph
.
parallel
.
prepare_context
()
model
=
fluid
.
dygraph
.
parallel
.
DataParallel
(
model
,
strategy
)
for
epoch_id
in
range
(
epoch
):
for
epoch_id
in
range
(
epoch
):
train_one_epoch
(
model
,
architect
,
train_loader
,
valid_loader
,
train_one_epoch
(
model
,
train_loader
,
valid_loader
,
optimizer
,
optimizer
,
epoch_id
,
use_data_parallel
,
log_freq
)
arch_optimizer
,
epoch_id
,
use_data_parallel
,
valid_one_epoch
(
model
,
valid_loader
,
epoch_id
,
log_freq
)
log_freq
)
print
(
model
.
student
.
_encoder
.
alphas
.
numpy
())
loss
,
acc
=
valid_one_epoch
(
model
,
dev_loader
,
epoch_id
,
log_freq
)
logger
.
info
(
"Valid set2, ce_loss {:.6f}; acc: {:.6f};"
.
format
(
loss
,
acc
))
try
:
print
(
model
.
student
.
_encoder
.
alphas
.
numpy
())
except
:
print
(
model
.
_layers
.
student
.
_encoder
.
alphas
.
numpy
())
print
(
"="
*
100
)
print
(
"="
*
100
)
...
...
paddleslim/dist/dml.py
浏览文件 @
ec96bbf2
...
@@ -18,7 +18,6 @@ from __future__ import print_function
...
@@ -18,7 +18,6 @@ from __future__ import print_function
import
copy
import
copy
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
import
paddle.nn.functional
as
F
class
DML
(
fluid
.
dygraph
.
Layer
):
class
DML
(
fluid
.
dygraph
.
Layer
):
...
@@ -70,7 +69,7 @@ class DML(fluid.dygraph.Layer):
...
@@ -70,7 +69,7 @@ class DML(fluid.dygraph.Layer):
cur_kl_loss
=
0
cur_kl_loss
=
0
for
j
in
range
(
self
.
model_num
):
for
j
in
range
(
self
.
model_num
):
if
i
!=
j
:
if
i
!=
j
:
x
=
F
.
log_softmax
(
logits
[
i
],
axis
=
1
)
x
=
fluid
.
layers
.
log_softmax
(
logits
[
i
],
axis
=
1
)
y
=
fluid
.
layers
.
softmax
(
logits
[
j
],
axis
=
1
)
y
=
fluid
.
layers
.
softmax
(
logits
[
j
],
axis
=
1
)
cur_kl_loss
+=
fluid
.
layers
.
kldiv_loss
(
cur_kl_loss
+=
fluid
.
layers
.
kldiv_loss
(
x
,
y
,
reduction
=
'batchmean'
)
x
,
y
,
reduction
=
'batchmean'
)
...
...
paddleslim/nas/darts/architect_for_bert.py
浏览文件 @
ec96bbf2
...
@@ -49,17 +49,17 @@ class Architect(object):
...
@@ -49,17 +49,17 @@ class Architect(object):
self
.
network_weight_decay
),
self
.
network_weight_decay
),
parameter_list
=
self
.
unrolled_model_params
)
parameter_list
=
self
.
unrolled_model_params
)
def
step
(
self
,
train_data
,
valid_data
):
def
step
(
self
,
train_data
,
valid_data
,
epoch
):
if
self
.
unrolled
:
if
self
.
unrolled
:
params_grads
=
self
.
_backward_step_unrolled
(
train_data
,
valid_data
)
params_grads
=
self
.
_backward_step_unrolled
(
train_data
,
valid_data
)
self
.
optimizer
.
apply_gradients
(
params_grads
)
self
.
optimizer
.
apply_gradients
(
params_grads
)
else
:
else
:
loss
=
self
.
_backward_step
(
valid_data
)
loss
=
self
.
_backward_step
(
valid_data
,
epoch
)
self
.
optimizer
.
minimize
(
loss
)
self
.
optimizer
.
minimize
(
loss
)
self
.
optimizer
.
clear_gradients
()
self
.
optimizer
.
clear_gradients
()
def
_backward_step
(
self
,
valid_data
):
def
_backward_step
(
self
,
valid_data
,
epoch
):
loss
=
self
.
model
.
loss
(
valid_data
)
loss
=
self
.
model
.
loss
(
valid_data
,
epoch
)
loss
[
0
].
backward
()
loss
[
0
].
backward
()
return
loss
[
0
]
return
loss
[
0
]
...
...
paddleslim/nas/darts/search_space/conv_bert/cls.py
浏览文件 @
ec96bbf2
...
@@ -31,6 +31,7 @@ import multiprocessing
...
@@ -31,6 +31,7 @@ import multiprocessing
import
paddle
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.fluid.dygraph
import
to_variable
,
Layer
,
Linear
from
paddle.fluid.dygraph
import
to_variable
,
Layer
,
Linear
from
paddle.fluid.dygraph.base
import
to_variable
from
.reader.cls
import
*
from
.reader.cls
import
*
from
.model.bert
import
BertModelLayer
from
.model.bert
import
BertModelLayer
from
.optimization
import
Optimizer
from
.optimization
import
Optimizer
...
@@ -65,14 +66,17 @@ class AdaBERTClassifier(Layer):
...
@@ -65,14 +66,17 @@ class AdaBERTClassifier(Layer):
self
.
_teacher_model
=
teacher_model
self
.
_teacher_model
=
teacher_model
self
.
_data_dir
=
data_dir
self
.
_data_dir
=
data_dir
self
.
use_fixed_gumbel
=
use_fixed_gumbel
self
.
use_fixed_gumbel
=
use_fixed_gumbel
#print(
self
.
T
=
1.0
# "----------------------load teacher model and test----------------------------------------"
print
(
#)
"----------------------load teacher model and test----------------------------------------"
#self.teacher = BERTClassifier(num_labels, model_path=self._teacher_model)
)
self
.
teacher
=
BERTClassifier
(
num_labels
,
model_path
=
self
.
_teacher_model
)
self
.
teacher
.
eval
()
#self.teacher.test(self._data_dir)
#self.teacher.test(self._data_dir)
#
print(
print
(
#
"----------------------finish load teacher model and test----------------------------------------"
"----------------------finish load teacher model and test----------------------------------------"
#
)
)
self
.
student
=
BertModelLayer
(
self
.
student
=
BertModelLayer
(
n_layer
=
self
.
_n_layer
,
n_layer
=
self
.
_n_layer
,
emb_size
=
self
.
_emb_size
,
emb_size
=
self
.
_emb_size
,
...
@@ -81,46 +85,84 @@ class AdaBERTClassifier(Layer):
...
@@ -81,46 +85,84 @@ class AdaBERTClassifier(Layer):
search_layer
=
self
.
_search_layer
,
search_layer
=
self
.
_search_layer
,
use_fixed_gumbel
=
self
.
use_fixed_gumbel
)
use_fixed_gumbel
=
self
.
use_fixed_gumbel
)
self
.
cls_fc
=
list
()
fix_emb
=
False
for
i
in
range
(
self
.
_n_layer
):
for
s_emb
,
t_emb
in
zip
(
self
.
student
.
emb_names
(),
fc
=
Linear
(
self
.
teacher
.
emb_names
()):
input_dim
=
self
.
_hidden_size
,
t_emb
.
stop_gradient
=
True
output_dim
=
self
.
_num_labels
,
if
fix_emb
:
param_attr
=
fluid
.
ParamAttr
(
s_emb
.
stop_gradient
=
True
name
=
"s_cls_out_%d_w"
%
i
,
print
(
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
scale
=
0.02
)),
"Assigning embedding[{}] from teacher to embedding[{}] in student."
.
bias_attr
=
fluid
.
ParamAttr
(
format
(
t_emb
.
name
,
s_emb
.
name
))
name
=
"s_cls_out_%d_b"
%
i
,
fluid
.
layers
.
assign
(
input
=
t_emb
,
output
=
s_emb
)
initializer
=
fluid
.
initializer
.
Constant
(
0.
)))
print
(
fc
=
self
.
add_sublayer
(
"cls_fc_%d"
%
i
,
fc
)
"Assigned embedding[{}] from teacher to embedding[{}] in student."
.
self
.
cls_fc
.
append
(
fc
)
format
(
t_emb
.
name
,
s_emb
.
name
)
)
def
forward
(
self
,
data_ids
):
def
forward
(
self
,
data_ids
,
epoch
):
src_ids
=
data_ids
[
0
]
src_ids
=
data_ids
[
0
]
position_ids
=
data_ids
[
1
]
position_ids
=
data_ids
[
1
]
sentence_ids
=
data_ids
[
2
]
sentence_ids
=
data_ids
[
2
]
return
self
.
student
(
src_ids
,
position_ids
,
sentence_ids
)
return
self
.
student
(
src_ids
,
position_ids
,
sentence_ids
,
epoch
)
def
arch_parameters
(
self
):
def
arch_parameters
(
self
):
return
self
.
student
.
arch_parameters
()
return
self
.
student
.
arch_parameters
()
def
genotype
(
self
):
def
ce
(
self
,
logits
):
return
self
.
arch_parameters
()
logits
=
np
.
exp
(
logits
-
np
.
max
(
logits
))
logits
=
logits
/
logits
.
sum
(
axis
=
0
)
return
logits
def
loss
(
self
,
data_ids
):
def
loss
(
self
,
data_ids
,
epoch
):
src_ids
=
data_ids
[
0
]
src_ids
=
data_ids
[
0
]
position_ids
=
data_ids
[
1
]
position_ids
=
data_ids
[
1
]
sentence_ids
=
data_ids
[
2
]
sentence_ids
=
data_ids
[
2
]
input_mask
=
data_ids
[
3
]
input_mask
=
data_ids
[
3
]
labels
=
data_ids
[
4
]
labels
=
data_ids
[
4
]
enc_output
=
self
.
student
(
s_logits
=
self
.
student
(
src_ids
,
position_ids
,
sentence_ids
,
epoch
)
src_ids
,
position_ids
,
sentence_ids
,
flops
=
[],
model_size
=
[])
t_enc_outputs
,
t_logits
,
t_losses
,
t_accs
,
_
=
self
.
teacher
(
data_ids
)
#define kd loss
kd_weights
=
[]
for
i
in
range
(
len
(
s_logits
)):
j
=
int
(
np
.
ceil
(
i
*
(
float
(
len
(
t_logits
))
/
len
(
s_logits
))))
kd_weights
.
append
(
t_losses
[
j
].
numpy
())
kd_weights
=
np
.
array
(
kd_weights
)
kd_weights
=
np
.
squeeze
(
kd_weights
)
kd_weights
=
to_variable
(
kd_weights
)
kd_weights
=
fluid
.
layers
.
softmax
(
-
kd_weights
)
kd_losses
=
[]
for
i
in
range
(
len
(
s_logits
)):
j
=
int
(
np
.
ceil
(
i
*
(
float
(
len
(
t_logits
))
/
len
(
s_logits
))))
t_logit
=
t_logits
[
j
]
s_logit
=
s_logits
[
i
]
t_logit
.
stop_gradient
=
True
t_probs
=
fluid
.
layers
.
softmax
(
t_logit
)
# P_j^T
s_probs
=
fluid
.
layers
.
softmax
(
s_logit
/
self
.
T
)
#P_j^S
#kd_loss = -t_probs * fluid.layers.log(s_probs)
kd_loss
=
fluid
.
layers
.
cross_entropy
(
input
=
s_probs
,
label
=
t_probs
,
soft_label
=
True
)
kd_loss
=
fluid
.
layers
.
reduce_mean
(
kd_loss
)
kd_loss
=
fluid
.
layers
.
scale
(
kd_loss
,
scale
=
kd_weights
[
i
])
kd_losses
.
append
(
kd_loss
)
kd_loss
=
fluid
.
layers
.
sum
(
kd_losses
)
losses
=
[]
for
logit
in
s_logits
:
ce_loss
,
probs
=
fluid
.
layers
.
softmax_with_cross_entropy
(
logits
=
logit
,
label
=
labels
,
return_softmax
=
True
)
loss
=
fluid
.
layers
.
mean
(
x
=
ce_loss
)
losses
.
append
(
loss
)
num_seqs
=
fluid
.
layers
.
create_tensor
(
dtype
=
'int64'
)
accuracy
=
fluid
.
layers
.
accuracy
(
input
=
probs
,
label
=
labels
,
total
=
num_seqs
)
ce_loss
=
fluid
.
layers
.
sum
(
losses
)
total_loss
=
(
1
-
self
.
_gamma
)
*
ce_loss
+
self
.
_gamma
*
kd_loss
ce_loss
,
probs
=
fluid
.
layers
.
softmax_with_cross_entropy
(
return
total_loss
,
accuracy
,
ce_loss
,
kd_loss
,
s_logits
logits
=
enc_output
,
label
=
labels
,
return_softmax
=
True
)
loss
=
fluid
.
layers
.
mean
(
x
=
ce_loss
)
num_seqs
=
fluid
.
layers
.
create_tensor
(
dtype
=
'int64'
)
accuracy
=
fluid
.
layers
.
accuracy
(
input
=
probs
,
label
=
labels
,
total
=
num_seqs
)
return
loss
,
accuracy
paddleslim/nas/darts/search_space/conv_bert/model/bert.py
浏览文件 @
ec96bbf2
...
@@ -56,9 +56,9 @@ class BertModelLayer(Layer):
...
@@ -56,9 +56,9 @@ class BertModelLayer(Layer):
self
.
use_fixed_gumbel
=
use_fixed_gumbel
self
.
use_fixed_gumbel
=
use_fixed_gumbel
self
.
_word_emb_name
=
"word_embedding"
self
.
_word_emb_name
=
"
s_
word_embedding"
self
.
_pos_emb_name
=
"pos_embedding"
self
.
_pos_emb_name
=
"
s_
pos_embedding"
self
.
_sent_emb_name
=
"sent_embedding"
self
.
_sent_emb_name
=
"s
_s
ent_embedding"
self
.
_dtype
=
"float16"
if
use_fp16
else
"float32"
self
.
_dtype
=
"float16"
if
use_fp16
else
"float32"
self
.
_conv_type
=
conv_type
self
.
_conv_type
=
conv_type
...
@@ -95,6 +95,10 @@ class BertModelLayer(Layer):
...
@@ -95,6 +95,10 @@ class BertModelLayer(Layer):
search_layer
=
self
.
_search_layer
,
search_layer
=
self
.
_search_layer
,
use_fixed_gumbel
=
self
.
use_fixed_gumbel
)
use_fixed_gumbel
=
self
.
use_fixed_gumbel
)
def
emb_names
(
self
):
return
self
.
_src_emb
.
parameters
()
+
self
.
_pos_emb
.
parameters
(
)
+
self
.
_sent_emb
.
parameters
()
def
max_flops
(
self
):
def
max_flops
(
self
):
return
self
.
_encoder
.
max_flops
return
self
.
_encoder
.
max_flops
...
@@ -108,6 +112,7 @@ class BertModelLayer(Layer):
...
@@ -108,6 +112,7 @@ class BertModelLayer(Layer):
src_ids
,
src_ids
,
position_ids
,
position_ids
,
sentence_ids
,
sentence_ids
,
epoch
,
flops
=
[],
flops
=
[],
model_size
=
[]):
model_size
=
[]):
"""
"""
...
@@ -150,9 +155,9 @@ class BertModelLayer(Layer):
...
@@ -150,9 +155,9 @@ class BertModelLayer(Layer):
src_emb_1
=
self
.
_src_emb
(
ids1
)
src_emb_1
=
self
.
_src_emb
(
ids1
)
emb_out_0
=
self
.
_emb_fac
(
src_emb_0
)
emb_out_0
=
self
.
_emb_fac
(
src_emb_0
)
emb_out_1
=
self
.
_emb_fac
(
src_emb_1
)
emb_out_1
=
self
.
_emb_fac
(
src_emb_1
)
# (bs, seq_len,
768
)
# (bs, seq_len,
hidden_size
)
enc_output
=
self
.
_encoder
(
enc_output
s
=
self
.
_encoder
(
emb_out_0
,
emb_out_1
,
flops
=
flops
,
model_size
=
model_size
)
emb_out_0
,
emb_out_1
,
epoch
,
flops
=
flops
,
model_size
=
model_size
)
return
enc_output
return
enc_output
s
paddleslim/nas/darts/search_space/conv_bert/model/transformer_encoder.py
浏览文件 @
ec96bbf2
...
@@ -52,11 +52,6 @@ class MixedOp(fluid.dygraph.Layer):
...
@@ -52,11 +52,6 @@ class MixedOp(fluid.dygraph.Layer):
def
__init__
(
self
,
n_channel
,
name
=
None
):
def
__init__
(
self
,
n_channel
,
name
=
None
):
super
(
MixedOp
,
self
).
__init__
()
super
(
MixedOp
,
self
).
__init__
()
PRIMITIVES
=
ConvBN_PRIMITIVES
PRIMITIVES
=
ConvBN_PRIMITIVES
# ops = [
# OPS[primitive](n_channel, name
# if name is None else name + "/" + primitive)
# for primitive in PRIMITIVES
# ]
ops
=
[]
ops
=
[]
for
primitive
in
PRIMITIVES
:
for
primitive
in
PRIMITIVES
:
op
=
OPS
[
primitive
](
n_channel
,
name
op
=
OPS
[
primitive
](
n_channel
,
name
...
@@ -74,21 +69,19 @@ class MixedOp(fluid.dygraph.Layer):
...
@@ -74,21 +69,19 @@ class MixedOp(fluid.dygraph.Layer):
self
.
_ops
=
fluid
.
dygraph
.
LayerList
(
ops
)
self
.
_ops
=
fluid
.
dygraph
.
LayerList
(
ops
)
def
forward
(
self
,
x
,
weights
):
def
forward
(
self
,
x
,
weights
,
index
):
#out = weights[0] * self._ops[0](x)
out
=
fluid
.
layers
.
sums
(
# out = fluid.layers.sums(
[
weights
[
i
]
*
op
(
x
)
for
i
,
op
in
enumerate
(
self
.
_ops
)])
# [weights[i] * op(x) for i, op in enumerate(self._ops)])
return
out
# return out
for
i
in
range
(
len
(
self
.
_ops
)):
# causebug in multi-gpus
if
weights
[
i
].
numpy
()
!=
0
:
#for i in range(len(self._ops)):
return
self
.
_ops
[
i
](
x
)
*
weights
[
i
]
# if weights[i].numpy() != 0:
# return self._ops[i](x) * weights[i]
def
gumbel_softmax
(
logits
,
temperature
=
1
,
hard
=
True
,
eps
=
1e-10
):
def
gumbel_softmax
(
logits
,
epoch
,
temperature
=
1.0
,
hard
=
True
,
eps
=
1e-10
):
#U = np.random.uniform(0, 1, logits.shape)
temperature
=
temperature
*
(
0.98
**
epoch
)
#U = - to_variable(
# np.log(-np.log(U + eps) + eps).astype("float32"))
U
=
np
.
random
.
gumbel
(
0
,
1
,
logits
.
shape
).
astype
(
"float32"
)
U
=
np
.
random
.
gumbel
(
0
,
1
,
logits
.
shape
).
astype
(
"float32"
)
logits
=
logits
+
to_variable
(
U
)
logits
=
logits
+
to_variable
(
U
)
...
@@ -98,13 +91,13 @@ def gumbel_softmax(logits, temperature=1, hard=True, eps=1e-10):
...
@@ -98,13 +91,13 @@ def gumbel_softmax(logits, temperature=1, hard=True, eps=1e-10):
if
hard
:
if
hard
:
maxes
=
fluid
.
layers
.
reduce_max
(
logits
,
dim
=
1
,
keep_dim
=
True
)
maxes
=
fluid
.
layers
.
reduce_max
(
logits
,
dim
=
1
,
keep_dim
=
True
)
hard
=
fluid
.
layers
.
cast
((
logits
==
maxes
),
logits
.
dtype
)
hard
=
fluid
.
layers
.
cast
((
logits
==
maxes
),
logits
.
dtype
)
# out = hard - logits.detach() + logits
index
=
np
.
argmax
(
hard
.
numpy
(),
axis
=
1
)
tmp
=
hard
-
logits
out
=
hard
-
logits
.
detach
()
+
logits
tmp
.
stop_gradient
=
True
#
tmp.stop_gradient = True
out
=
tmp
+
logits
#
out = tmp + logits
else
:
else
:
out
=
logits
out
=
logits
return
out
return
out
,
index
class
Zero
(
fluid
.
dygraph
.
Layer
):
class
Zero
(
fluid
.
dygraph
.
Layer
):
...
@@ -135,8 +128,6 @@ class ReluConvBN(fluid.dygraph.Layer):
...
@@ -135,8 +128,6 @@ class ReluConvBN(fluid.dygraph.Layer):
use_cudnn
=
True
,
use_cudnn
=
True
,
name
=
None
):
name
=
None
):
super
(
ReluConvBN
,
self
).
__init__
()
super
(
ReluConvBN
,
self
).
__init__
()
#conv_std = (2.0 /
# (filter_size[0] * filter_size[1] * out_c * in_c))**0.5
conv_param
=
fluid
.
ParamAttr
(
conv_param
=
fluid
.
ParamAttr
(
name
=
name
if
name
is
None
else
(
name
+
"_conv.weights"
),
name
=
name
if
name
is
None
else
(
name
+
"_conv.weights"
),
initializer
=
fluid
.
initializer
.
MSRA
())
initializer
=
fluid
.
initializer
.
MSRA
())
...
@@ -184,7 +175,7 @@ class Cell(fluid.dygraph.Layer):
...
@@ -184,7 +175,7 @@ class Cell(fluid.dygraph.Layer):
ops
.
append
(
op
)
ops
.
append
(
op
)
self
.
_ops
=
fluid
.
dygraph
.
LayerList
(
ops
)
self
.
_ops
=
fluid
.
dygraph
.
LayerList
(
ops
)
def
forward
(
self
,
s0
,
s1
,
weights
):
def
forward
(
self
,
s0
,
s1
,
weights
,
index
):
s0
=
self
.
preprocess0
(
s0
)
s0
=
self
.
preprocess0
(
s0
)
s1
=
self
.
preprocess1
(
s1
)
s1
=
self
.
preprocess1
(
s1
)
...
@@ -192,7 +183,8 @@ class Cell(fluid.dygraph.Layer):
...
@@ -192,7 +183,8 @@ class Cell(fluid.dygraph.Layer):
offset
=
0
offset
=
0
for
i
in
range
(
self
.
_steps
):
for
i
in
range
(
self
.
_steps
):
s
=
fluid
.
layers
.
sums
([
s
=
fluid
.
layers
.
sums
([
self
.
_ops
[
offset
+
j
](
h
,
weights
[
offset
+
j
])
self
.
_ops
[
offset
+
j
](
h
,
weights
[
offset
+
j
],
index
[
offset
+
j
])
for
j
,
h
in
enumerate
(
states
)
for
j
,
h
in
enumerate
(
states
)
])
])
offset
+=
len
(
states
)
offset
+=
len
(
states
)
...
@@ -216,12 +208,27 @@ class EncoderLayer(Layer):
...
@@ -216,12 +208,27 @@ class EncoderLayer(Layer):
super
(
EncoderLayer
,
self
).
__init__
()
super
(
EncoderLayer
,
self
).
__init__
()
self
.
_n_layer
=
n_layer
self
.
_n_layer
=
n_layer
self
.
_hidden_size
=
hidden_size
self
.
_hidden_size
=
hidden_size
self
.
_n_channel
=
256
self
.
_n_channel
=
128
self
.
_steps
=
3
self
.
_steps
=
3
self
.
_n_ops
=
len
(
ConvBN_PRIMITIVES
)
self
.
_n_ops
=
len
(
ConvBN_PRIMITIVES
)
self
.
use_fixed_gumbel
=
use_fixed_gumbel
self
.
use_fixed_gumbel
=
use_fixed_gumbel
self
.
stem
=
fluid
.
dygraph
.
Sequential
(
self
.
stem0
=
fluid
.
dygraph
.
Sequential
(
Conv2D
(
num_channels
=
1
,
num_filters
=
self
.
_n_channel
,
filter_size
=
[
3
,
self
.
_hidden_size
],
padding
=
[
1
,
0
],
param_attr
=
fluid
.
ParamAttr
(
initializer
=
MSRA
()),
bias_attr
=
False
),
BatchNorm
(
num_channels
=
self
.
_n_channel
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
1
)),
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0
))))
self
.
stem1
=
fluid
.
dygraph
.
Sequential
(
Conv2D
(
Conv2D
(
num_channels
=
1
,
num_channels
=
1
,
num_filters
=
self
.
_n_channel
,
num_filters
=
self
.
_n_channel
,
...
@@ -254,11 +261,7 @@ class EncoderLayer(Layer):
...
@@ -254,11 +261,7 @@ class EncoderLayer(Layer):
default_initializer
=
NormalInitializer
(
default_initializer
=
NormalInitializer
(
loc
=
0.0
,
scale
=
1e-3
))
loc
=
0.0
,
scale
=
1e-3
))
# self.k = fluid.layers.create_parameter(
self
.
pool2d_avg
=
Pool2D
(
pool_type
=
'avg'
,
global_pooling
=
True
)
# shape=[1, self._n_layer],
# dtype="float32",
# default_initializer=NormalInitializer(
# loc=0.0, scale=1e-3))
self
.
BN
=
BatchNorm
(
self
.
BN
=
BatchNorm
(
num_channels
=
self
.
_n_channel
,
num_channels
=
self
.
_n_channel
,
...
@@ -269,38 +272,58 @@ class EncoderLayer(Layer):
...
@@ -269,38 +272,58 @@ class EncoderLayer(Layer):
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0
),
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0
),
trainable
=
False
))
trainable
=
False
))
self
.
pool2d_avg
=
Pool2D
(
pool_type
=
'avg'
,
global_pooling
=
True
)
self
.
bns
=
[]
self
.
outs
=
[]
self
.
out
=
Linear
(
for
i
in
range
(
self
.
_n_layer
):
self
.
_n_channel
,
bn
=
BatchNorm
(
3
,
num_channels
=
self
.
_n_channel
,
param_attr
=
ParamAttr
(
initializer
=
MSRA
()),
param_attr
=
fluid
.
ParamAttr
(
bias_attr
=
ParamAttr
(
initializer
=
MSRA
()))
initializer
=
fluid
.
initializer
.
Constant
(
value
=
1
),
trainable
=
False
),
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0
),
trainable
=
False
))
out
=
Linear
(
self
.
_n_channel
,
3
,
param_attr
=
ParamAttr
(
initializer
=
MSRA
()),
bias_attr
=
ParamAttr
(
initializer
=
MSRA
()))
self
.
bns
.
append
(
bn
)
self
.
outs
.
append
(
out
)
self
.
_bns
=
fluid
.
dygraph
.
LayerList
(
self
.
bns
)
self
.
_outs
=
fluid
.
dygraph
.
LayerList
(
self
.
outs
)
self
.
pooled_fc
=
Linear
(
input_dim
=
self
.
_n_channel
,
output_dim
=
self
.
_hidden_size
,
param_attr
=
fluid
.
ParamAttr
(
name
=
self
.
full_name
()
+
"pooled_fc.w_0"
,
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
scale
=
1.0
)),
bias_attr
=
fluid
.
ParamAttr
(
name
=
self
.
full_name
()
+
"pooled_fc.b_0"
),
act
=
"tanh"
)
self
.
use_fixed_gumbel
=
use_fixed_gumbel
self
.
use_fixed_gumbel
=
use_fixed_gumbel
self
.
gumbel_alphas
=
gumbel_softmax
(
self
.
alphas
).
detach
()
self
.
gumbel_alphas
=
gumbel_softmax
(
self
.
alphas
,
0
)[
0
].
detach
()
#print("gumbel_alphas: \n", self.gumbel_alphas.numpy())
def
forward
(
self
,
enc_input_0
,
enc_input_1
,
flops
=
[],
model_size
=
[]):
def
forward
(
self
,
enc_input_0
,
enc_input_1
,
epoch
,
flops
=
[],
alphas
=
self
.
gumbel_alphas
if
self
.
use_fixed_gumbel
else
gumbel_softmax
(
model_size
=
[]):
self
.
alphas
)
alphas
,
index
=
self
.
gumbel_alphas
if
self
.
use_fixed_gumbel
else
gumbel_softmax
(
self
.
alphas
,
epoch
)
s0
=
fluid
.
layers
.
reshape
(
s0
=
fluid
.
layers
.
unsqueeze
(
enc_input_0
,
[
1
])
enc_input_0
,
[
-
1
,
1
,
enc_input_0
.
shape
[
1
],
enc_input_0
.
shape
[
2
]])
s1
=
fluid
.
layers
.
unsqueeze
(
enc_input_1
,
[
1
])
s1
=
fluid
.
layers
.
reshape
(
s0
=
self
.
stem0
(
s0
)
enc_input_1
,
[
-
1
,
1
,
enc_input_1
.
shape
[
1
],
enc_input_1
.
shape
[
2
]])
s1
=
self
.
stem1
(
s1
)
# (bs, 1, seq_len, hidden_size)
s0
=
self
.
stem
(
s0
)
s1
=
self
.
stem
(
s1
)
# (bs, n_channel, seq_len, 1)
enc_outputs
=
[]
for
i
in
range
(
self
.
_n_layer
):
for
i
in
range
(
self
.
_n_layer
):
s0
,
s1
=
s1
,
self
.
_cells
[
i
](
s0
,
s1
,
alphas
)
s0
,
s1
=
s1
,
self
.
_cells
[
i
](
s0
,
s1
,
alphas
,
index
)
# (bs, n_channel, seq_len, 1)
# (bs, n_channel, seq_len, 1)
tmp
=
self
.
_bns
[
i
](
s1
)
s1
=
self
.
BN
(
s1
)
tmp
=
self
.
pool2d_avg
(
tmp
)
tmp
=
fluid
.
layers
.
reshape
(
tmp
,
shape
=
[
-
1
,
0
])
outputs
=
self
.
pool2d_avg
(
s1
)
tmp
=
self
.
_outs
[
i
](
tmp
)
outputs
=
fluid
.
layers
.
reshape
(
outputs
,
shape
=
[
-
1
,
0
]
)
enc_outputs
.
append
(
tmp
)
outputs
=
self
.
out
(
outputs
)
return
outputs
return
enc_
outputs
paddleslim/teachers/bert/cls.py
浏览文件 @
ec96bbf2
...
@@ -58,7 +58,8 @@ class BERTClassifier(Layer):
...
@@ -58,7 +58,8 @@ class BERTClassifier(Layer):
num_labels
,
num_labels
,
task_name
=
"mnli"
,
task_name
=
"mnli"
,
model_path
=
None
,
model_path
=
None
,
use_cuda
=
True
):
use_cuda
=
True
,
return_pooled_out
=
True
):
super
(
BERTClassifier
,
self
).
__init__
()
super
(
BERTClassifier
,
self
).
__init__
()
self
.
task_name
=
task_name
.
lower
()
self
.
task_name
=
task_name
.
lower
()
BERT_BASE_PATH
=
"./data/pretrained_models/uncased_L-12_H-768_A-12/"
BERT_BASE_PATH
=
"./data/pretrained_models/uncased_L-12_H-768_A-12/"
...
@@ -84,7 +85,7 @@ class BERTClassifier(Layer):
...
@@ -84,7 +85,7 @@ class BERTClassifier(Layer):
}
}
self
.
cls_model
=
ClsModelLayer
(
self
.
cls_model
=
ClsModelLayer
(
self
.
bert_config
,
num_labels
,
return_pooled_out
=
True
)
self
.
bert_config
,
num_labels
,
return_pooled_out
=
return_pooled_out
)
if
model_path
is
not
None
:
if
model_path
is
not
None
:
#restore the model
#restore the model
...
@@ -101,6 +102,9 @@ class BERTClassifier(Layer):
...
@@ -101,6 +102,9 @@ class BERTClassifier(Layer):
"You should load pretrained model for training this teacher model."
"You should load pretrained model for training this teacher model."
)
)
def
emb_names
(
self
):
return
self
.
cls_model
.
emb_names
()
def
forward
(
self
,
input
):
def
forward
(
self
,
input
):
return
self
.
cls_model
(
input
)
return
self
.
cls_model
(
input
)
...
...
paddleslim/teachers/bert/model/bert.py
浏览文件 @
ec96bbf2
...
@@ -122,6 +122,10 @@ class BertModelLayer(Layer):
...
@@ -122,6 +122,10 @@ class BertModelLayer(Layer):
postprocess_cmd
=
"dan"
,
postprocess_cmd
=
"dan"
,
param_initializer
=
self
.
_param_initializer
)
param_initializer
=
self
.
_param_initializer
)
def
emb_names
(
self
):
return
self
.
_src_emb
.
parameters
()
+
self
.
_pos_emb
.
parameters
(
)
+
self
.
_sent_emb
.
parameters
()
def
forward
(
self
,
src_ids
,
position_ids
,
sentence_ids
,
input_mask
):
def
forward
(
self
,
src_ids
,
position_ids
,
sentence_ids
,
input_mask
):
"""
"""
forward
forward
...
...
paddleslim/teachers/bert/model/cls.py
浏览文件 @
ec96bbf2
...
@@ -46,6 +46,7 @@ class ClsModelLayer(Layer):
...
@@ -46,6 +46,7 @@ class ClsModelLayer(Layer):
self
.
use_fp16
=
use_fp16
self
.
use_fp16
=
use_fp16
self
.
loss_scaling
=
loss_scaling
self
.
loss_scaling
=
loss_scaling
self
.
n_layers
=
config
[
'num_hidden_layers'
]
self
.
n_layers
=
config
[
'num_hidden_layers'
]
self
.
return_pooled_out
=
return_pooled_out
self
.
bert_layer
=
BertModelLayer
(
self
.
bert_layer
=
BertModelLayer
(
config
=
self
.
config
,
return_pooled_out
=
True
,
use_fp16
=
self
.
use_fp16
)
config
=
self
.
config
,
return_pooled_out
=
True
,
use_fp16
=
self
.
use_fp16
)
...
@@ -64,6 +65,9 @@ class ClsModelLayer(Layer):
...
@@ -64,6 +65,9 @@ class ClsModelLayer(Layer):
fc
=
self
.
add_sublayer
(
"cls_fc_%d"
%
i
,
fc
)
fc
=
self
.
add_sublayer
(
"cls_fc_%d"
%
i
,
fc
)
self
.
cls_fc
.
append
(
fc
)
self
.
cls_fc
.
append
(
fc
)
def
emb_names
(
self
):
return
self
.
bert_layer
.
emb_names
()
def
forward
(
self
,
data_ids
):
def
forward
(
self
,
data_ids
):
"""
"""
forward
forward
...
@@ -76,11 +80,23 @@ class ClsModelLayer(Layer):
...
@@ -76,11 +80,23 @@ class ClsModelLayer(Layer):
enc_outputs
,
next_sent_feats
=
self
.
bert_layer
(
enc_outputs
,
next_sent_feats
=
self
.
bert_layer
(
src_ids
,
position_ids
,
sentence_ids
,
input_mask
)
src_ids
,
position_ids
,
sentence_ids
,
input_mask
)
if
not
self
.
return_pooled_out
:
cls_feat
=
fluid
.
layers
.
dropout
(
x
=
next_sent_feats
[
-
1
],
dropout_prob
=
0.1
,
dropout_implementation
=
"upscale_in_train"
)
logits
=
self
.
cls_fc
[
-
1
](
cls_feat
)
probs
=
fluid
.
layers
.
softmax
(
logits
)
num_seqs
=
fluid
.
layers
.
create_tensor
(
dtype
=
'int64'
)
accuracy
=
fluid
.
layers
.
accuracy
(
input
=
probs
,
label
=
labels
,
total
=
num_seqs
)
return
enc_outputs
,
logits
,
accuracy
,
num_seqs
logits
=
[]
logits
=
[]
losses
=
[]
losses
=
[]
accuracys
=
[]
accuracys
=
[]
for
next_sent_feat
,
fc
in
zip
(
next_sent_feats
,
self
.
cls_fc
):
for
next_sent_feat
,
fc
in
zip
(
next_sent_feats
,
self
.
cls_fc
):
cls_feat
=
fluid
.
layers
.
dropout
(
cls_feat
=
fluid
.
layers
.
dropout
(
x
=
next_sent_feat
,
x
=
next_sent_feat
,
dropout_prob
=
0.1
,
dropout_prob
=
0.1
,
...
...
paddleslim/teachers/bert/reader/cls.py
浏览文件 @
ec96bbf2
...
@@ -16,6 +16,7 @@ import io
...
@@ -16,6 +16,7 @@ import io
import
os
import
os
import
types
import
types
import
csv
import
csv
import
random
import
numpy
as
np
import
numpy
as
np
from
.
import
tokenization
from
.
import
tokenization
from
.batching
import
prepare_batch_data
from
.batching
import
prepare_batch_data
...
@@ -110,9 +111,9 @@ class DataProcessor(object):
...
@@ -110,9 +111,9 @@ class DataProcessor(object):
def
get_num_examples
(
self
,
phase
):
def
get_num_examples
(
self
,
phase
):
"""Get number of examples for train, dev or test."""
"""Get number of examples for train, dev or test."""
if
phase
not
in
[
'train'
,
'dev'
,
'test'
]:
#
if phase not in ['train', 'dev', 'test']:
raise
ValueError
(
#
raise ValueError(
"Unknown phase, which should be in ['train', 'dev', 'test']."
)
#
"Unknown phase, which should be in ['train', 'dev', 'test'].")
return
self
.
num_examples
[
phase
]
return
self
.
num_examples
[
phase
]
def
get_train_progress
(
self
):
def
get_train_progress
(
self
):
...
@@ -135,6 +136,8 @@ class DataProcessor(object):
...
@@ -135,6 +136,8 @@ class DataProcessor(object):
epoch: int. Total epoches to generate data.
epoch: int. Total epoches to generate data.
shuffle: bool. Whether to shuffle examples.
shuffle: bool. Whether to shuffle examples.
"""
"""
search_examples
=
self
.
get_train_examples
(
self
.
data_dir
)
random
.
shuffle
(
search_examples
)
if
phase
==
'train'
:
if
phase
==
'train'
:
examples
=
self
.
get_train_examples
(
self
.
data_dir
)
examples
=
self
.
get_train_examples
(
self
.
data_dir
)
self
.
num_examples
[
'train'
]
=
len
(
examples
)
self
.
num_examples
[
'train'
]
=
len
(
examples
)
...
@@ -145,13 +148,13 @@ class DataProcessor(object):
...
@@ -145,13 +148,13 @@ class DataProcessor(object):
examples
=
self
.
get_test_examples
(
self
.
data_dir
)
examples
=
self
.
get_test_examples
(
self
.
data_dir
)
self
.
num_examples
[
'test'
]
=
len
(
examples
)
self
.
num_examples
[
'test'
]
=
len
(
examples
)
elif
phase
==
'search_train'
:
elif
phase
==
'search_train'
:
examples
=
self
.
get_train_examples
(
self
.
data_dir
)
#
examples = self.get_train_examples(self.data_dir)
self
.
num_examples
[
'search_train'
]
=
len
(
examples
)
/
2
self
.
num_examples
[
'search_train'
]
=
len
(
search_
examples
)
/
2
examples
=
examples
[:
self
.
num_examples
[
'search_train'
]]
examples
=
search_
examples
[:
self
.
num_examples
[
'search_train'
]]
elif
phase
==
'search_valid'
:
elif
phase
==
'search_valid'
:
examples
=
self
.
get_train_examples
(
self
.
data_dir
)
#
examples = self.get_train_examples(self.data_dir)
self
.
num_examples
[
'search_valid'
]
=
len
(
examples
)
/
2
self
.
num_examples
[
'search_valid'
]
=
len
(
search_
examples
)
/
2
examples
=
examples
[
self
.
num_examples
[
'search_train
'
]:]
examples
=
search_examples
[
self
.
num_examples
[
'search_valid
'
]:]
else
:
else
:
raise
ValueError
(
raise
ValueError
(
"Unknown phase, which should be in ['train', 'dev', 'test']."
)
"Unknown phase, which should be in ['train', 'dev', 'test']."
)
...
@@ -340,7 +343,7 @@ class MnliProcessor(DataProcessor):
...
@@ -340,7 +343,7 @@ class MnliProcessor(DataProcessor):
def
get_train_examples
(
self
,
data_dir
):
def
get_train_examples
(
self
,
data_dir
):
"""See base class."""
"""See base class."""
return
self
.
_create_examples
(
return
self
.
_create_examples
(
self
.
_read_tsv
(
os
.
path
.
join
(
data_dir
,
"train.tsv"
)),
"train"
)
self
.
_read_tsv
(
os
.
path
.
join
(
data_dir
,
"train
_aug
.tsv"
)),
"train"
)
def
get_dev_examples
(
self
,
data_dir
):
def
get_dev_examples
(
self
,
data_dir
):
"""See base class."""
"""See base class."""
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录