test_quant_aware.py 7.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
sys.path.append("../")
import unittest
import paddle
import paddle.fluid as fluid
from paddleslim.quant import quant_aware, convert
sys.path.append("../demo")
from models import MobileNet
from layers import conv_bn_layer
import paddle.dataset.mnist as reader
from paddle.fluid.framework import IrGraph
from paddle.fluid import core
import numpy as np


class TestQuantAwareCase1(unittest.TestCase):
    def get_model(self):
        image = fluid.layers.data(
            name='image', shape=[1, 28, 28], dtype='float32')
        label = fluid.layers.data(name='label', shape=[1], dtype='int64')
        model = MobileNet()
        out = model.net(input=image, class_dim=10)
        cost = fluid.layers.cross_entropy(input=out, label=label)
        avg_cost = fluid.layers.mean(x=cost)
        startup_prog = fluid.default_startup_program()
        train_prog = fluid.default_main_program()
        return startup_prog, train_prog

    def get_op_number(self, prog):

        graph = IrGraph(core.Graph(prog.desc), for_test=False)
        quant_op_nums = 0
        op_nums = 0
        for op in graph.all_op_nodes():
            if op.name() in ['conv2d', 'depthwise_conv2d', 'mul']:
                op_nums += 1
            elif 'fake_' in op.name():
                quant_op_nums += 1
        return op_nums, quant_op_nums

    def test_quant_op(self):
        startup_prog, train_prog = self.get_model()
        place = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
        config_1 = {
            'weight_quantize_type': 'channel_wise_abs_max',
            'activation_quantize_type': 'moving_average_abs_max',
            'quantize_op_types': ['depthwise_conv2d', 'mul', 'conv2d'],
        }

        quant_prog_1 = quant_aware(
            train_prog, place, config=config_1, for_test=True)
        op_nums_1, quant_op_nums_1 = self.get_op_number(quant_prog_1)
        convert_prog_1 = convert(quant_prog_1, place, config=config_1)
        convert_op_nums_1, convert_quant_op_nums_1 = self.get_op_number(
            convert_prog_1)

        config_1['not_quant_pattern'] = ['last_fc']
        quant_prog_2 = quant_aware(
            train_prog, place, config=config_1, for_test=True)
        op_nums_2, quant_op_nums_2 = self.get_op_number(quant_prog_2)
        convert_prog_2 = convert(quant_prog_2, place, config=config_1)
        convert_op_nums_2, convert_quant_op_nums_2 = self.get_op_number(
            convert_prog_2)

        self.assertTrue(op_nums_1 == op_nums_2)
        # test quant_aware op numbers
        self.assertTrue(op_nums_1 * 4 == quant_op_nums_1)
        # test convert op numbers
        self.assertTrue(convert_op_nums_1 * 2 == convert_quant_op_nums_1)
        # test skip_quant
        self.assertTrue(quant_op_nums_1 - 4 == quant_op_nums_2)
        self.assertTrue(convert_quant_op_nums_1 - 2 == convert_quant_op_nums_2)


class TestQuantAwareCase2(unittest.TestCase):
    def test_accuracy(self):
        image = fluid.layers.data(
            name='image', shape=[1, 28, 28], dtype='float32')
        label = fluid.layers.data(name='label', shape=[1], dtype='int64')
        model = MobileNet()
        out = model.net(input=image, class_dim=10)
        cost = fluid.layers.cross_entropy(input=out, label=label)
        avg_cost = fluid.layers.mean(x=cost)
        acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
        acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)
        optimizer = fluid.optimizer.Momentum(
            momentum=0.9,
            learning_rate=0.01,
            regularization=fluid.regularizer.L2Decay(4e-5))
        optimizer.minimize(avg_cost)
        main_prog = fluid.default_main_program()
        val_prog = main_prog.clone(for_test=True)

        place = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        feeder = fluid.DataFeeder([image, label], place, program=main_prog)
        train_reader = paddle.batch(
            paddle.dataset.mnist.train(), batch_size=64)
        eval_reader = paddle.batch(paddle.dataset.mnist.test(), batch_size=64)

        def train(program):
            iter = 0
            for data in train_reader():
                cost, top1, top5 = exe.run(
                    program,
                    feed=feeder.feed(data),
                    fetch_list=[avg_cost, acc_top1, acc_top5])
                iter += 1
                if iter % 100 == 0:
                    print(
                        'train iter={}, avg loss {}, acc_top1 {}, acc_top5 {}'.
                        format(iter, cost, top1, top5))

        def test(program):
            iter = 0
            result = [[], [], []]
            for data in train_reader():
                cost, top1, top5 = exe.run(
                    program,
                    feed=feeder.feed(data),
                    fetch_list=[avg_cost, acc_top1, acc_top5])
                iter += 1
                if iter % 100 == 0:
                    print(
                        'eval iter={}, avg loss {}, acc_top1 {}, acc_top5 {}'.
                        format(iter, cost, top1, top5))
                result[0].append(cost)
                result[1].append(top1)
                result[2].append(top5)
            print(' avg loss {}, acc_top1 {}, acc_top5 {}'.format(
                np.mean(result[0]), np.mean(result[1]), np.mean(result[2])))
            return np.mean(result[1]), np.mean(result[2])

        train(main_prog)
        top1_1, top5_1 = test(main_prog)

        config = {
            'weight_quantize_type': 'channel_wise_abs_max',
            'activation_quantize_type': 'moving_average_abs_max',
            'quantize_op_types': ['depthwise_conv2d', 'mul', 'conv2d'],
        }
        quant_train_prog = quant_aware(
            main_prog, place, config, for_test=False)
        quant_eval_prog = quant_aware(val_prog, place, config, for_test=True)
        train(quant_train_prog)
        quant_eval_prog = convert(quant_eval_prog, place, config)
        top1_2, top5_2 = test(quant_eval_prog)
        # values before quantization and after quantization should be close
        print("before quantization: top1: {}, top5: {}".format(top1_1, top5_1))
        print("after quantization: top1: {}, top5: {}".format(top1_2, top5_2))


if __name__ == '__main__':
    unittest.main()