model_zoo_en.md 26.9 KB
Newer Older
W
whs 已提交
1 2
# Model Zoo

B
Bai Yifan 已提交
3
## 1. Image Classification
W
whs 已提交
4

B
Bai Yifan 已提交
5
Dataset:ImageNet1000
W
whs 已提交
6

B
Bai Yifan 已提交
7
### 1.1 Quantization
W
whs 已提交
8

B
Bai Yifan 已提交
9
| Model | Method | Top-1/Top-5 Acc | Model Size(MB) | TensorRT latency(V100, ms) | Download |
W
whs 已提交
10
|:--:|:---:|:--:|:--:|:--:|:--:|
B
Bai Yifan 已提交
11 12 13 14 15 16 17 18
|MobileNetV1|-|70.99%/89.68%| 17 | -| [model](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar) |
|MobileNetV1|quant_post|70.18%/89.25% (-0.81%/-0.43%)| 4.4 | - | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_quant_post.tar) |
|MobileNetV1|quant_aware|70.60%/89.57% (-0.39%/-0.11%)| 4.4 | -| [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_quant_aware.tar) |
| MobileNetV2 | - |72.15%/90.65%| 15 | - | [model](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) |
| MobileNetV2 | quant_post | 71.15%/90.11% (-1%/-0.54%)| 4.0   | - | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV2_quant_post.tar) |
| MobileNetV2 | quant_aware |72.05%/90.63% (-0.1%/-0.02%)| 4.0 | - | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV2_quant_aware.tar) |
|ResNet50|-|76.50%/93.00%| 99 | 2.71 | [model](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar) |
|ResNet50|quant_post|76.33%/93.02% (-0.17%/+0.02%)| 25.1| 1.19 | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet50_quant_post.tar) |
C
ceci3 已提交
19
|ResNet50|quant_aware|    76.48%/93.11% (-0.02%/+0.11%)| 25.1 | 1.17 | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet50_quant_awre.tar) |
B
Bai Yifan 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

PaddleLite latency(ms)

| Device    | Model    | Method      | armv7 Thread 1 | armv7 Thread 2 | armv7 Thread 4 | armv8 Thread 1 | armv8 Thread 2 | armv8 Thread 4 |
| ------- | ----------- | ------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- |
| Qualcomm 835 | MobileNetV1 | FP32 baseline | 96.1942        | 53.2058        | 32.4468        | 88.4955        | 47.95          | 27.5189        |
| Qualcomm 835 | MobileNetV1 | quant_aware   | 60.8186        | 32.1931        | 16.4275        | 56.4311        | 29.5446        | 15.1053        |
| Qualcomm 835 | MobileNetV1 | quant_post    | 60.5615        | 32.4016        | 16.6596        | 56.5266        | 29.7178        | 15.1459        |
| Qualcomm 835 | MobileNetV2 | FP32 baseline | 65.715         | 38.1346        | 25.155         | 61.3593        | 36.2038        | 22.849         |
| Qualcomm 835 | MobileNetV2 | quant_aware   | 48.3655        | 30.2021        | 21.9303        | 46.1487        | 27.3146        | 18.3053        |
| Qualcomm 835 | MobileNetV2 | quant_post    | 48.3495        | 30.3069        | 22.1506        | 45.8715        | 27.4105        | 18.2223        |
| Qualcomm 835 | ResNet50    | FP32 baseline | 526.811        | 319.6486       | 205.8345       | 506.1138       | 335.1584       | 214.8936       |
| Qualcomm 835 | ResNet50    | quant_aware   | 475.4538       | 256.8672       | 139.699        | 461.7344       | 247.9506       | 145.9847       |
| Qualcomm 835 | ResNet50    | quant_post    | 476.0507       | 256.5963       | 139.7266       | 461.9176       | 248.3795       | 149.353        |
| Qualcomm 855 | MobileNetV1 | FP32 baseline | 33.5086        | 19.5773        | 11.7534        | 31.3474        | 18.5382        | 10.0811        |
| Qualcomm 855 | MobileNetV1 | quant_aware   | 36.7067        | 21.628         | 11.0372        | 14.0238        | 8.199          | 4.2588         |
| Qualcomm 855 | MobileNetV1 | quant_post    | 37.0498        | 21.7081        | 11.0779        | 14.0947        | 8.1926         | 4.2934         |
| Qualcomm 855 | MobileNetV2 | FP32 baseline | 25.0396        | 15.2862        | 9.6609         | 22.909         | 14.1797        | 8.8325         |
| Qualcomm 855 | MobileNetV2 | quant_aware   | 28.1583        | 18.3317        | 11.8103        | 16.9158        | 11.1606        | 7.4148         |
| Qualcomm 855 | MobileNetV2 | quant_post    | 28.1631        | 18.3917        | 11.8333        | 16.9399        | 11.1772        | 7.4176         |
| Qualcomm 855 | ResNet50    | FP32 baseline | 185.3705       | 113.0825       | 87.0741        | 177.7367       | 110.0433       | 74.4114        |
| Qualcomm 855 | ResNet50    | quant_aware   | 327.6883       | 202.4536       | 106.243        | 243.5621       | 150.0542       | 78.4205        |
| Qualcomm 855 | ResNet50    | quant_post    | 328.2683       | 201.9937       | 106.744        | 242.6397       | 150.0338       | 79.8659        |
| Kirin 970 | MobileNetV1 | FP32 baseline | 101.2455       | 56.4053        | 35.6484        | 94.8985        | 51.7251        | 31.9511        |
| Kirin 970 | MobileNetV1 | quant_aware   | 62.5012        | 32.1863        | 16.6018        | 57.7477        | 29.2116        | 15.0703        |
| Kirin 970 | MobileNetV1 | quant_post    | 62.4412        | 32.2585        | 16.6215        | 57.825         | 29.2573        | 15.1206        |
| Kirin 970 | MobileNetV2 | FP32 baseline | 70.4176        | 42.0795        | 25.1939        | 68.9597        | 39.2145        | 22.6617        |
| Kirin 970 | MobileNetV2 | quant_aware   | 52.9961        | 31.5323        | 22.1447        | 49.4858        | 28.0856        | 18.7287        |
| Kirin 970 | MobileNetV2 | quant_post    | 53.0961        | 31.7987        | 21.8334        | 49.383         | 28.2358        | 18.3642        |
| Kirin 970 | ResNet50    | FP32 baseline | 586.8943       | 344.0858       | 228.2293       | 573.3344       | 351.4332       | 225.8006       |
| Kirin 970 | ResNet50    | quant_aware   | 488.361        | 260.1697       | 142.416        | 479.5668       | 249.8485       | 138.1742       |
| Kirin 970 | ResNet50    | quant_post    | 489.6188       | 258.3279       | 142.6063       | 480.0064       | 249.5339       | 138.5284       |

### 1.2 Pruning

55
PaddleLite:
B
Bai Yifan 已提交
56

57 58 59
env: Qualcomm SnapDragon 845 + armv8

criterion: time cost in Thread1/Thread2/Thread4
W
whs 已提交
60

61
PaddleLite version: v2.3
W
whs 已提交
62 63


64 65 66 67 68 69 70 71 72 73 74
|Model | Method | Top-1/Top-5 Acc | ModelSize(MB) | GFLOPs |PaddleLite cost(ms)|TensorRT speed(FPS)| download |
|:--:|:---:|:--:|:--:|:--:|:--:|:--:|:--:|
| MobileNetV1 |    Baseline    |         70.99%/89.68%         |       17       |  1.11  |66.052\35.8014\19.5762|-| [download](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar) |
| MobileNetV1 |  uniform -50%  | 69.4%/88.66% (-1.59%/-1.02%)  |       9        |  0.56  | 33.5636\18.6834\10.5076|-|[download](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_uniform-50.tar) |
| MobileNetV1 | sensitive -30% |  70.4%/89.3% (-0.59%/-0.38%)  |       12       |  0.74  | 46.5958\25.3098\13.6982|-|[download](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_sensitive-30.tar) |
| MobileNetV1 | sensitive -50% | 69.8% / 88.9% (-1.19%/-0.78%) |       9        |  0.56  |37.9892\20.7882\11.3144|-| [download](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_sensitive-50.tar) |
| MobileNetV2 |       -        |         72.15%/90.65%         |       15       |  0.59  |41.7874\23.375\13.3998|-| [download](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) |
| MobileNetV2 |  uniform -50%  | 65.79%/86.11% (-6.35%/-4.47%) |       11       | 0.296  |23.8842\13.8698\8.5572|-| [download](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV2_uniform-50.tar) |
|  ResNet34   |       -        |         72.15%/90.65%         |       84       |  7.36  |217.808\139.943\96.7504|342.32| [download](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar) |
|  ResNet34   |  uniform -50%  | 70.99%/89.95% (-1.36%/-0.87%) |       41       |  3.67  |114.787\75.0332\51.8438|452.41| [download](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet34_uniform-50.tar) |
|  ResNet34   |  auto -55.05%  | 70.24%/89.63% (-2.04%/-1.06%) |       33       |  3.31  |105.924\69.3222\48.0246|457.25| [download](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet34_auto-55.tar) |
W
whs 已提交
75

B
Bai Yifan 已提交
76
### 1.3 Distillation
W
whs 已提交
77

B
Bai Yifan 已提交
78
| Model | Method | Top-1/Top-5 Acc | Model Size(MB) | Download |
W
whs 已提交
79
|:--:|:---:|:--:|:--:|:--:|
B
Bai Yifan 已提交
80 81 82 83 84 85 86 87
| MobileNetV1 |                     student                     |  70.99%/89.68%  |       17       | [model](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar) |
|ResNet50_vd|teacher|79.12%/94.44%| 99 | [model](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar) |
|MobileNetV1|ResNet50_vd<sup>[1](#trans1)</sup> distill|72.77%/90.68% (+1.78%/+1.00%)| 17 | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_distilled.tar) |
| MobileNetV2 |                     student                     |  72.15%/90.65%  |       15       | [model](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) |
| MobileNetV2 |            ResNet50_vd distill             |  74.28%/91.53% (+2.13%/+0.88%)  |       15       | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV2_distilled.tar) |
|  ResNet50   |                     student                     |  76.50%/93.00%  |       99       | [model](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar) |
|ResNet101|teacher|77.56%/93.64%| 173 | [model](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar) |
|  ResNet50   |             ResNet101 distill              |  77.29%/93.65% (+0.79%/+0.65%)  |       99       | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet50_distilled.tar) |
W
whs 已提交
88

89
Note: The `_vd` suffix indicates that the pre-trained model uses Mixup. Please refer to the detailed introduction: [mixup: Beyond Empirical Risk Minimization](https://arxiv.org/abs/1710.09412)
B
Bai Yifan 已提交
90

W
whs 已提交
91

C
ceci3 已提交
92 93 94 95
### 1.4 NAS

| Model | Method | Top-1/Top-5 Acc | Volume(MB) | GFLOPs | Download |
|:--:|:---:|:--:|:--:|:--:|:--:|
C
ceci3 已提交
96 97 98 99 100 101 102 103 104
|   MobileNetV2   |       -        |            72.15%/90.65%           |     15      |  0.59  | [model](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) |
| MobileNetV2_NAS |     SANAS      |  71.518%/90.208% (-0.632%/-0.442%) |     14      | 0.295  | [model](https://paddlemodels.cdn.bcebos.com/PaddleSlim/MobileNetV2_sanas.tar) |

Dataset: Cifar10
| Model | Method |  Acc  |  Params(MB) | Download |
|:---:|:--:|:--:|:--:|:--:|
|           Darts           |   -   |     97.135%         |        3.767         |  -  |
| Darts_SA(Based on Darts)  | SANAS |  97.276%(+0.141%)   |    3.344(-11.2%)     |  -  |

105
Note: The token of MobileNetV2_NAS is [4, 4, 5, 1, 1, 2, 1, 1, 0, 2, 6, 2, 0, 3, 4, 5, 0, 4, 5, 5, 1, 4, 8, 0, 0]. The token of Darts_SA is [5, 5, 0, 5, 5, 10, 7, 7, 5, 7, 7, 11, 10, 12, 10, 0, 5, 3, 10, 8].
C
ceci3 已提交
106

C
ceci3 已提交
107

B
Bai Yifan 已提交
108
## 2. Object Detection
W
whs 已提交
109

B
Bai Yifan 已提交
110 111 112
### 2.1 Quantization

Dataset: COCO 2017
W
whs 已提交
113

B
Bai Yifan 已提交
114 115 116
|              Model              |  Method  | Dataset | Image/GPU | Input 608 Box AP | Input 416 Box AP | Input 320 Box AP | Model Size(MB) | TensorRT latency(V100, ms) |  Download  |
| :----------------------------: | :---------: | :----: | :-------: | :------------: | :------------: | :------------: | :------------: | :----------: |:----------: |
|      MobileNet-V1-YOLOv3       |      -      |  COCO  |     8     |      29.3      |      29.3      |      27.1      |       95       |  - | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
C
ceci3 已提交
117 118
|      MobileNet-V1-YOLOv3       | quant_post  |  COCO  |     8     |     27.9 (-1.4)|    28.0 (-1.3)      |    26.0 (-1.0) |       25       | -  | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_quant_post.tar) |
|      MobileNet-V1-YOLOv3       | quant_aware |  COCO  |     8     |     28.1 (-1.2)|  28.2 (-1.1)      |    25.8 (-1.2) |       26.3     | -  | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenet_coco_quant_aware.tar) |
B
Bai Yifan 已提交
119 120 121 122 123
|      R34-YOLOv3                |      -      |  COCO  |     8     |      36.2      |      34.3      |      31.4      |       162       |  - | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
|      R34-YOLOv3                | quant_post  |  COCO  |     8     | 35.7 (-0.5)    |      -         |      -         |       42.7      |  - | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r34_coco_quant_post.tar) |
|      R34-YOLOv3                | quant_aware |  COCO  |     8     |  35.2 (-1.0)   | 33.3 (-1.0)    |     30.3 (-1.1)|       44       |  - | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r34_coco_quant_aware.tar) |
| R50-dcn-YOLOv3 obj365_pretrain |      -      |  COCO  |     8     |      41.4      |       -      |       -       |       177       | 18.56  |[model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_pretrained_coco.tar) |
| R50-dcn-YOLOv3 obj365_pretrain | quant_aware |  COCO  |     8     |   40.6 (-0.8)  |       37.5   |       34.1    |       66       |  14.64 | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_quant_aware.tar) |
W
whs 已提交
124 125 126



B
Bai Yifan 已提交
127
Dataset:WIDER-FACE
W
whs 已提交
128 129 130



B
Bai Yifan 已提交
131 132 133 134 135 136 137 138 139 140 141
|     Model      |   Method    | Image/GPU | Input Size |        Easy/Medium/Hard         | Model Size(MB) |                           Download                           |
| :------------: | :---------: | :-------: | :--------: | :-----------------------------: | :--------------: | :----------------------------------------------------------: |
|   BlazeFace    |      -      |     8     |    640     |         91.5/89.2/79.7          |       815        | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_original.tar) |
|   BlazeFace    | quant_post  |     8     |    640     | 87.8/85.1/74.9 (-3.7/-4.1/-4.8) |       228        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_origin_quant_post.tar) |
|   BlazeFace    | quant_aware |     8     |    640     | 90.5/87.9/77.6 (-1.0/-1.3/-2.1) |       228        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_origin_quant_aware.tar) |
| BlazeFace-Lite |      -      |     8     |    640     |         90.9/88.5/78.1          |       711        | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_lite.tar) |
| BlazeFace-Lite | quant_post  |     8     |    640     | 89.4/86.7/75.7 (-1.5/-1.8/-2.4) |       211        | [model]((https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_lite_quant_post.tar)) |
| BlazeFace-Lite | quant_aware |     8     |    640     | 89.7/87.3/77.0 (-1.2/-1.2/-1.1) |       211        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_lite_quant_aware.tar) |
| BlazeFace-NAS  |      -      |     8     |    640     |         83.7/80.7/65.8          |       244        | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas.tar) |
| BlazeFace-NAS  | quant_post  |     8     |    640     | 81.6/78.3/63.6 (-2.1/-2.4/-2.2) |        71        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_nas_quant_post.tar) |
| BlazeFace-NAS  | quant_aware |     8     |    640     | 83.1/79.7/64.2 (-0.6/-1.0/-1.6) |        71        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_nas_quant_aware.tar) |
W
whs 已提交
142

B
Bai Yifan 已提交
143
### 2.2 Pruning
W
whs 已提交
144

B
Bai Yifan 已提交
145
Dataset:Pasacl VOC & COCO 2017
W
whs 已提交
146

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
PaddleLite:

env: Qualcomm SnapDragon 845 + armv8

criterion: time cost in Thread1/Thread2/Thread4

PaddleLite version: v2.3

|             Model              |      Method       |  Dataset   | Image/GPU | Input 608 Box AP | Input 416 Box AP | Input 320 Box AP | Model Size(MB) | GFLOPs (608*608) | PaddleLite cost(ms)(608*608) | TensorRT speed(FPS)(608*608) |              Download                           |
| :----------------------------: | :---------------: | :--------: | :-------: | :--------------: | :--------------: | :--------------: | :------------: | :--------------: | :--------------: | :--------------: | :----------------------------: |
|      MobileNet-V1-YOLOv3       |     Baseline      | Pascal VOC |     8     |       76.2       |       76.7       |       75.3       |       94       |      40.49       | 1238\796.943\520.101 |60.40| [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
|      MobileNet-V1-YOLOv3       | sensitive -52.88% | Pascal VOC |     8     |   77.6 (+1.4)    |    77.7 (1.0)    |   75.5 (+0.2)    |       31       |      19.08       | 602.497\353.759\222.427 |99.36| [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenet_v1_voc_prune.tar) |
|      MobileNet-V1-YOLOv3       |         -         |    COCO    |     8     |       29.3       |       29.3       |       27.0       |       95       |      41.35       |-|-| [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
|      MobileNet-V1-YOLOv3       | sensitive -51.77% |    COCO    |     8     |   26.0 (-3.3)    |   25.1 (-4.2)    |   22.6 (-4.4)    |       32       |      19.94       |-|73.93| [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenet_v1_prune.tar) |
|         R50-dcn-YOLOv3         |         -         |    COCO    |     8     |       39.1       |        -         |        -         |      177       |      89.60       |-|27.68| [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn.tar) |
|         R50-dcn-YOLOv3         | sensitive -9.37%  |    COCO    |     8     |   39.3 (+0.2)    |        -         |        -         |      150       |      81.20       |-|30.08| [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_prune.tar) |
|         R50-dcn-YOLOv3         | sensitive -24.68% |    COCO    |     8     |   37.3 (-1.8)    |        -         |        -         |      113       |      67.48       |-|34.32| [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_prune578.tar) |
| R50-dcn-YOLOv3 obj365_pretrain |         -         |    COCO    |     8     |       41.4       |        -         |        -         |      177       |      89.60       |-|-| [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_pretrained_coco.tar) |
| R50-dcn-YOLOv3 obj365_pretrain | sensitive -9.37%  |    COCO    |     8     |   40.5 (-0.9)    |        -         |        -         |      150       |      81.20       |-|-| [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_prune.tar) |
| R50-dcn-YOLOv3 obj365_pretrain | sensitive -24.68% |    COCO    |     8     |   37.8 (-3.3)    |        -         |        -         |      113       |      67.48       |-|-| [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_prune578.tar) |
W
whs 已提交
167

B
Bai Yifan 已提交
168
### 2.3 Distillation
W
whs 已提交
169

B
Bai Yifan 已提交
170
Dataset:Pasacl VOC & COCO 2017
W
whs 已提交
171 172


B
Bai Yifan 已提交
173 174 175 176 177 178 179 180
|        Model        |         Method          |  Dataset   | Image/GPU | Input 608 Box AP | Input 416 Box AP | Input 320 Box AP | Model Size(MB) |                           Download                           |
| :-----------------: | :---------------------: | :--------: | :-------: | :--------------: | :--------------: | :--------------: | :--------------: | :----------------------------------------------------------: |
| MobileNet-V1-YOLOv3 |            -            | Pascal VOC |     8     |       76.2       |       76.7       |       75.3       |        94        | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
|   ResNet34-YOLOv3   |            -            | Pascal VOC |     8     |       82.6       |       81.9       |       80.1       |       162        | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) |
| MobileNet-V1-YOLOv3 | ResNet34-YOLOv3 distill | Pascal VOC |     8     |   79.0 (+2.8)    |   78.2 (+1.5)    |   75.5 (+0.2)    |        94        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_voc_distilled.tar) |
| MobileNet-V1-YOLOv3 |            -            |    COCO    |     8     |       29.3       |       29.3       |       27.0       |        95        | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
|   ResNet34-YOLOv3   |            -            |    COCO    |     8     |       36.2       |       34.3       |       31.4       |       163        | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
| MobileNet-V1-YOLOv3 | ResNet34-YOLOv3 distill |    COCO    |     8     |   31.4 (+2.1)    |   30.0 (+0.7)    |   27.1 (+0.1)    |        95        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_distilled.tar) |
W
whs 已提交
181 182


C
ceci3 已提交
183 184 185 186 187 188 189 190
### 2.4 NAS

Dataset: WIDER-FACE

|      Model      |  Method   | Image/GPU | Input size |        Easy/Medium/Hard         |  volume(KB) |    latency(ms)|                         Download                             |
| :------------: | :---------: | :-------: | :------: | :-----------------------------: | :------------: | :------------: | :----------------------------------------------------------: |
|   BlazeFace    |      -      |     8     |   640    |         91.5/89.2/79.7          |      815       |       71.862     | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_original.tar) |
| BlazeFace-NAS  |      -      |     8     |   640    |         83.7/80.7/65.8          |      244       |       21.117     |[model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas.tar) |
C
ceci3 已提交
191
| BlazeFace-NASV2 |    SANAS    |     8     |   640    |         87.0/83.7/68.5          |      389       |       22.558     | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas2.tar) |
C
ceci3 已提交
192

C
ceci3 已提交
193
Note: latency is based on latency_855.txt, the file is test on 855 by PaddleLite。The config of BlazeFace-NASV2 is in [there](https://github.com/PaddlePaddle/PaddleDetection/blob/master/configs/face_detection/blazeface_nas_v2.yml).
C
ceci3 已提交
194

W
whs 已提交
195

C
ceci3 已提交
196
## 3. Image Segmentation
B
Bai Yifan 已提交
197
Dataset:Cityscapes
W
whs 已提交
198

B
Bai Yifan 已提交
199
### 3.1 Quantization
W
whs 已提交
200

B
Bai Yifan 已提交
201 202 203 204 205 206 207 208
|         Model          |   Method    |     mIoU      | Model Size(MB) |                           Download                           |
| :--------------------: | :---------: | :-----------: | :--------------: | :----------------------------------------------------------: |
| DeepLabv3+/MobileNetv1 |      -      |     63.26     |       6.6        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv1.tar ) |
| DeepLabv3+/MobileNetv1 | quant_post  | 58.63 (-4.63) |       1.8        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv1_2049x1025_quant_post.tar) |
| DeepLabv3+/MobileNetv1 | quant_aware | 62.03 (-1.23) |       1.8        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv1_2049x1025_quant_aware.tar) |
| DeepLabv3+/MobileNetv2 |      -      |     69.81     |       7.4        | [model](https://paddleseg.bj.bcebos.com/models/mobilenet_cityscapes.tgz) |
| DeepLabv3+/MobileNetv2 | quant_post  | 67.59 (-2.22) |       2.1        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv2_2049x1025_quant_post.tar) |
| DeepLabv3+/MobileNetv2 | quant_aware | 68.33 (-1.48) |       2.1        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv2_2049x1025_quant_aware.tar) |
W
whs 已提交
209

B
Bai Yifan 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
Image segmentation model PaddleLite latency (ms), input size 769x769

| Device       | Model                  | Method        | armv7 Thread 1 | armv7 Thread 2 | armv7 Thread 4 | armv8 Thread 1 | armv8 Thread 2 | armv8 Thread 4 |
| ------------ | ---------------------- | ------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- |
| Qualcomm 835 | Deeplabv3- MobileNetV1 | FP32 baseline | 1227.9894      | 734.1922       | 527.9592       | 1109.96        | 699.3818       | 479.0818       |
| Qualcomm 835 | Deeplabv3- MobileNetV1 | quant_aware   | 848.6544       | 512.785        | 382.9915       | 752.3573       | 455.0901       | 307.8808       |
| Qualcomm 835 | Deeplabv3- MobileNetV1 | quant_post    | 840.2323       | 510.103        | 371.9315       | 748.9401       | 452.1745       | 309.2084       |
| Qualcomm 835 | Deeplabv3-MobileNetV2  | FP32 baseline | 1282.8126      | 793.2064       | 653.6538       | 1193.9908      | 737.1827       | 593.4522       |
| Qualcomm 835 | Deeplabv3-MobileNetV2  | quant_aware   | 976.0495       | 659.0541       | 513.4279       | 892.1468       | 582.9847       | 484.7512       |
| Qualcomm 835 | Deeplabv3-MobileNetV2  | quant_post    | 981.44         | 658.4969       | 538.6166       | 885.3273       | 586.1284       | 484.0018       |
| Qualcomm 855 | Deeplabv3- MobileNetV1 | FP32 baseline | 568.8748       | 339.8578       | 278.6316       | 420.6031       | 281.3197       | 217.5222       |
| Qualcomm 855 | Deeplabv3- MobileNetV1 | quant_aware   | 608.7578       | 347.2087       | 260.653        | 241.2394       | 177.3456       | 143.9178       |
| Qualcomm 855 | Deeplabv3- MobileNetV1 | quant_post    | 609.0142       | 347.3784       | 259.9825       | 239.4103       | 180.1894       | 139.9178       |
| Qualcomm 855 | Deeplabv3-MobileNetV2  | FP32 baseline | 639.4425       | 390.1851       | 322.7014       | 477.7667       | 339.7411       | 262.2847       |
| Qualcomm 855 | Deeplabv3-MobileNetV2  | quant_aware   | 703.7275       | 497.689        | 417.1296       | 394.3586       | 300.2503       | 239.9204       |
| Qualcomm 855 | Deeplabv3-MobileNetV2  | quant_post    | 705.7589       | 474.4076       | 427.2951       | 394.8352       | 297.4035       | 264.6724       |
| Kirin 970    | Deeplabv3- MobileNetV1 | FP32 baseline | 1682.1792      | 1437.9774      | 1181.0246      | 1261.6739      | 1068.6537      | 690.8225       |
| Kirin 970    | Deeplabv3- MobileNetV1 | quant_aware   | 1062.3394      | 1248.1014      | 878.3157       | 774.6356       | 710.6277       | 528.5376       |
| Kirin 970    | Deeplabv3- MobileNetV1 | quant_post    | 1109.1917      | 1339.6218      | 866.3587       | 771.5164       | 716.5255       | 500.6497       |
| Kirin 970    | Deeplabv3-MobileNetV2  | FP32 baseline | 1771.1301      | 1746.0569      | 1222.4805      | 1448.9739      | 1192.4491      | 760.606        |
| Kirin 970    | Deeplabv3-MobileNetV2  | quant_aware   | 1320.2905      | 921.4522       | 676.0732       | 1145.8801      | 821.5685       | 590.1713       |
| Kirin 970    | Deeplabv3-MobileNetV2  | quant_post    | 1320.386       | 918.5328       | 672.2481       | 1020.753       | 820.094        | 591.4114       |
W
whs 已提交
232 233 234



B
Bai Yifan 已提交
235 236 237 238


### 3.2 Pruning

239 240 241 242 243 244 245 246 247 248 249 250 251
PaddleLite:

env: Qualcomm SnapDragon 845 + armv8

criterion: time cost in Thread1/Thread2/Thread4

PaddleLite version: v2.3

|   Model   |      Method       |     mIoU      | Model Size(MB) | GFLOPs | PaddleLite cost(ms) | TensorRT speed(FPS) |          Download        |
| :-------: | :---------------: | :-----------: | :--------------: | :----: | :--------------: | :----: |  :-------------------: |
| fast-scnn |     baseline      |     69.64     |        11        | 14.41  | 1226.36\682.96\415.664 |39.53| [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/fast_scnn_cityscape.tar) |
| fast-scnn | uniform  -17.07%  | 69.58 (-0.06) |       8.5        | 11.95  | 1140.37\656.612\415.888 |42.01| [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/fast_scnn_cityscape_uniform-17.tar) |
| fast-scnn | sensitive -47.60% | 66.68 (-2.96) |       5.7        |  7.55  | 866.693\494.467\291.748 |51.48| [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/fast_scnn_cityscape_sensitive-47.tar) |