model_zoo_en.md 26.4 KB
Newer Older
W
whs 已提交
1 2
# Model Zoo

B
Bai Yifan 已提交
3
## 1. Image Classification
W
whs 已提交
4

B
Bai Yifan 已提交
5
Dataset:ImageNet1000
W
whs 已提交
6

B
Bai Yifan 已提交
7
### 1.1 Quantization
W
whs 已提交
8

B
Bai Yifan 已提交
9
| Model | Method | Top-1/Top-5 Acc | Model Size(MB) | TensorRT latency(V100, ms) | Download |
W
whs 已提交
10
|:--:|:---:|:--:|:--:|:--:|:--:|
B
Bai Yifan 已提交
11 12 13 14 15 16 17 18
|MobileNetV1|-|70.99%/89.68%| 17 | -| [model](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar) |
|MobileNetV1|quant_post|70.18%/89.25% (-0.81%/-0.43%)| 4.4 | - | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_quant_post.tar) |
|MobileNetV1|quant_aware|70.60%/89.57% (-0.39%/-0.11%)| 4.4 | -| [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_quant_aware.tar) |
| MobileNetV2 | - |72.15%/90.65%| 15 | - | [model](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) |
| MobileNetV2 | quant_post | 71.15%/90.11% (-1%/-0.54%)| 4.0   | - | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV2_quant_post.tar) |
| MobileNetV2 | quant_aware |72.05%/90.63% (-0.1%/-0.02%)| 4.0 | - | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV2_quant_aware.tar) |
|ResNet50|-|76.50%/93.00%| 99 | 2.71 | [model](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar) |
|ResNet50|quant_post|76.33%/93.02% (-0.17%/+0.02%)| 25.1| 1.19 | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet50_quant_post.tar) |
C
ceci3 已提交
19
|ResNet50|quant_aware|    76.48%/93.11% (-0.02%/+0.11%)| 25.1 | 1.17 | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet50_quant_awre.tar) |
B
Bai Yifan 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

PaddleLite latency(ms)

| Device    | Model    | Method      | armv7 Thread 1 | armv7 Thread 2 | armv7 Thread 4 | armv8 Thread 1 | armv8 Thread 2 | armv8 Thread 4 |
| ------- | ----------- | ------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- |
| Qualcomm 835 | MobileNetV1 | FP32 baseline | 96.1942        | 53.2058        | 32.4468        | 88.4955        | 47.95          | 27.5189        |
| Qualcomm 835 | MobileNetV1 | quant_aware   | 60.8186        | 32.1931        | 16.4275        | 56.4311        | 29.5446        | 15.1053        |
| Qualcomm 835 | MobileNetV1 | quant_post    | 60.5615        | 32.4016        | 16.6596        | 56.5266        | 29.7178        | 15.1459        |
| Qualcomm 835 | MobileNetV2 | FP32 baseline | 65.715         | 38.1346        | 25.155         | 61.3593        | 36.2038        | 22.849         |
| Qualcomm 835 | MobileNetV2 | quant_aware   | 48.3655        | 30.2021        | 21.9303        | 46.1487        | 27.3146        | 18.3053        |
| Qualcomm 835 | MobileNetV2 | quant_post    | 48.3495        | 30.3069        | 22.1506        | 45.8715        | 27.4105        | 18.2223        |
| Qualcomm 835 | ResNet50    | FP32 baseline | 526.811        | 319.6486       | 205.8345       | 506.1138       | 335.1584       | 214.8936       |
| Qualcomm 835 | ResNet50    | quant_aware   | 475.4538       | 256.8672       | 139.699        | 461.7344       | 247.9506       | 145.9847       |
| Qualcomm 835 | ResNet50    | quant_post    | 476.0507       | 256.5963       | 139.7266       | 461.9176       | 248.3795       | 149.353        |
| Qualcomm 855 | MobileNetV1 | FP32 baseline | 33.5086        | 19.5773        | 11.7534        | 31.3474        | 18.5382        | 10.0811        |
| Qualcomm 855 | MobileNetV1 | quant_aware   | 36.7067        | 21.628         | 11.0372        | 14.0238        | 8.199          | 4.2588         |
| Qualcomm 855 | MobileNetV1 | quant_post    | 37.0498        | 21.7081        | 11.0779        | 14.0947        | 8.1926         | 4.2934         |
| Qualcomm 855 | MobileNetV2 | FP32 baseline | 25.0396        | 15.2862        | 9.6609         | 22.909         | 14.1797        | 8.8325         |
| Qualcomm 855 | MobileNetV2 | quant_aware   | 28.1583        | 18.3317        | 11.8103        | 16.9158        | 11.1606        | 7.4148         |
| Qualcomm 855 | MobileNetV2 | quant_post    | 28.1631        | 18.3917        | 11.8333        | 16.9399        | 11.1772        | 7.4176         |
| Qualcomm 855 | ResNet50    | FP32 baseline | 185.3705       | 113.0825       | 87.0741        | 177.7367       | 110.0433       | 74.4114        |
| Qualcomm 855 | ResNet50    | quant_aware   | 327.6883       | 202.4536       | 106.243        | 243.5621       | 150.0542       | 78.4205        |
| Qualcomm 855 | ResNet50    | quant_post    | 328.2683       | 201.9937       | 106.744        | 242.6397       | 150.0338       | 79.8659        |
| Kirin 970 | MobileNetV1 | FP32 baseline | 101.2455       | 56.4053        | 35.6484        | 94.8985        | 51.7251        | 31.9511        |
| Kirin 970 | MobileNetV1 | quant_aware   | 62.5012        | 32.1863        | 16.6018        | 57.7477        | 29.2116        | 15.0703        |
| Kirin 970 | MobileNetV1 | quant_post    | 62.4412        | 32.2585        | 16.6215        | 57.825         | 29.2573        | 15.1206        |
| Kirin 970 | MobileNetV2 | FP32 baseline | 70.4176        | 42.0795        | 25.1939        | 68.9597        | 39.2145        | 22.6617        |
| Kirin 970 | MobileNetV2 | quant_aware   | 52.9961        | 31.5323        | 22.1447        | 49.4858        | 28.0856        | 18.7287        |
| Kirin 970 | MobileNetV2 | quant_post    | 53.0961        | 31.7987        | 21.8334        | 49.383         | 28.2358        | 18.3642        |
| Kirin 970 | ResNet50    | FP32 baseline | 586.8943       | 344.0858       | 228.2293       | 573.3344       | 351.4332       | 225.8006       |
| Kirin 970 | ResNet50    | quant_aware   | 488.361        | 260.1697       | 142.416        | 479.5668       | 249.8485       | 138.1742       |
| Kirin 970 | ResNet50    | quant_post    | 489.6188       | 258.3279       | 142.6063       | 480.0064       | 249.5339       | 138.5284       |

### 1.2 Pruning

55
PaddleLite:
B
Bai Yifan 已提交
56

57 58 59
env: Qualcomm SnapDragon 845 + armv8

criterion: time cost in Thread1/Thread2/Thread4
W
whs 已提交
60

61
PaddleLite version: v2.3
W
whs 已提交
62 63


64 65 66 67 68 69 70 71 72 73 74
|Model | Method | Top-1/Top-5 Acc | ModelSize(MB) | GFLOPs |PaddleLite cost(ms)|TensorRT speed(FPS)| download |
|:--:|:---:|:--:|:--:|:--:|:--:|:--:|:--:|
| MobileNetV1 |    Baseline    |         70.99%/89.68%         |       17       |  1.11  |66.052\35.8014\19.5762|-| [download](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar) |
| MobileNetV1 |  uniform -50%  | 69.4%/88.66% (-1.59%/-1.02%)  |       9        |  0.56  | 33.5636\18.6834\10.5076|-|[download](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_uniform-50.tar) |
| MobileNetV1 | sensitive -30% |  70.4%/89.3% (-0.59%/-0.38%)  |       12       |  0.74  | 46.5958\25.3098\13.6982|-|[download](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_sensitive-30.tar) |
| MobileNetV1 | sensitive -50% | 69.8% / 88.9% (-1.19%/-0.78%) |       9        |  0.56  |37.9892\20.7882\11.3144|-| [download](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_sensitive-50.tar) |
| MobileNetV2 |       -        |         72.15%/90.65%         |       15       |  0.59  |41.7874\23.375\13.3998|-| [download](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) |
| MobileNetV2 |  uniform -50%  | 65.79%/86.11% (-6.35%/-4.47%) |       11       | 0.296  |23.8842\13.8698\8.5572|-| [download](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV2_uniform-50.tar) |
|  ResNet34   |       -        |         72.15%/90.65%         |       84       |  7.36  |217.808\139.943\96.7504|342.32| [download](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar) |
|  ResNet34   |  uniform -50%  | 70.99%/89.95% (-1.36%/-0.87%) |       41       |  3.67  |114.787\75.0332\51.8438|452.41| [download](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet34_uniform-50.tar) |
|  ResNet34   |  auto -55.05%  | 70.24%/89.63% (-2.04%/-1.06%) |       33       |  3.31  |105.924\69.3222\48.0246|457.25| [download](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet34_auto-55.tar) |
W
whs 已提交
75

B
Bai Yifan 已提交
76
### 1.3 Distillation
W
whs 已提交
77

B
Bai Yifan 已提交
78
| Model | Method | Top-1/Top-5 Acc | Model Size(MB) | Download |
W
whs 已提交
79
|:--:|:---:|:--:|:--:|:--:|
B
Bai Yifan 已提交
80 81 82 83 84 85 86 87
| MobileNetV1 |                     student                     |  70.99%/89.68%  |       17       | [model](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar) |
|ResNet50_vd|teacher|79.12%/94.44%| 99 | [model](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar) |
|MobileNetV1|ResNet50_vd<sup>[1](#trans1)</sup> distill|72.77%/90.68% (+1.78%/+1.00%)| 17 | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_distilled.tar) |
| MobileNetV2 |                     student                     |  72.15%/90.65%  |       15       | [model](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) |
| MobileNetV2 |            ResNet50_vd distill             |  74.28%/91.53% (+2.13%/+0.88%)  |       15       | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV2_distilled.tar) |
|  ResNet50   |                     student                     |  76.50%/93.00%  |       99       | [model](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar) |
|ResNet101|teacher|77.56%/93.64%| 173 | [model](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar) |
|  ResNet50   |             ResNet101 distill              |  77.29%/93.65% (+0.79%/+0.65%)  |       99       | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet50_distilled.tar) |
W
whs 已提交
88

89
Note: The `_vd` suffix indicates that the pre-trained model uses Mixup. Please refer to the detailed introduction: [mixup: Beyond Empirical Risk Minimization](https://arxiv.org/abs/1710.09412)
B
Bai Yifan 已提交
90

W
whs 已提交
91

C
ceci3 已提交
92 93 94 95
### 1.4 NAS

| Model | Method | Top-1/Top-5 Acc | Volume(MB) | GFLOPs | Download |
|:--:|:---:|:--:|:--:|:--:|:--:|
C
ceci3 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108
|   MobileNetV2   |       -        |            72.15%/90.65%           |     15      |  0.59  | [model](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) |
| MobileNetV2_NAS |     SANAS      |  71.518%/90.208% (-0.632%/-0.442%) |     14      | 0.295  | [model](https://paddlemodels.cdn.bcebos.com/PaddleSlim/MobileNetV2_sanas.tar) |

Dataset: Cifar10
| Model | Method |  Acc  |  Params(MB) | Download |
|:---:|:--:|:--:|:--:|:--:|
|           Darts           |   -   |     97.135%         |        3.767         |  -  |
| Darts_SA(Based on Darts)  | SANAS |  97.276%(+0.141%)   |    3.344(-11.2%)     |  -  |

!!! note "Note"

    <a name="trans1">[1]</a>: The token of MobileNetV2_NAS is [4, 4, 5, 1, 1, 2, 1, 1, 0, 2, 6, 2, 0, 3, 4, 5, 0, 4, 5, 5, 1, 4, 8, 0, 0]. The token of Darts_SA is [5, 5, 0, 5, 5, 10, 7, 7, 5, 7, 7, 11, 10, 12, 10, 0, 5, 3, 10, 8].

C
ceci3 已提交
109

B
Bai Yifan 已提交
110
## 2. Object Detection
W
whs 已提交
111

B
Bai Yifan 已提交
112 113 114
### 2.1 Quantization

Dataset: COCO 2017
W
whs 已提交
115

B
Bai Yifan 已提交
116 117 118
|              Model              |  Method  | Dataset | Image/GPU | Input 608 Box AP | Input 416 Box AP | Input 320 Box AP | Model Size(MB) | TensorRT latency(V100, ms) |  Download  |
| :----------------------------: | :---------: | :----: | :-------: | :------------: | :------------: | :------------: | :------------: | :----------: |:----------: |
|      MobileNet-V1-YOLOv3       |      -      |  COCO  |     8     |      29.3      |      29.3      |      27.1      |       95       |  - | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
C
ceci3 已提交
119 120
|      MobileNet-V1-YOLOv3       | quant_post  |  COCO  |     8     |     27.9 (-1.4)|    28.0 (-1.3)      |    26.0 (-1.0) |       25       | -  | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_quant_post.tar) |
|      MobileNet-V1-YOLOv3       | quant_aware |  COCO  |     8     |     28.1 (-1.2)|  28.2 (-1.1)      |    25.8 (-1.2) |       26.3     | -  | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenet_coco_quant_aware.tar) |
B
Bai Yifan 已提交
121 122 123 124 125
|      R34-YOLOv3                |      -      |  COCO  |     8     |      36.2      |      34.3      |      31.4      |       162       |  - | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
|      R34-YOLOv3                | quant_post  |  COCO  |     8     | 35.7 (-0.5)    |      -         |      -         |       42.7      |  - | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r34_coco_quant_post.tar) |
|      R34-YOLOv3                | quant_aware |  COCO  |     8     |  35.2 (-1.0)   | 33.3 (-1.0)    |     30.3 (-1.1)|       44       |  - | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r34_coco_quant_aware.tar) |
| R50-dcn-YOLOv3 obj365_pretrain |      -      |  COCO  |     8     |      41.4      |       -      |       -       |       177       | 18.56  |[model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_pretrained_coco.tar) |
| R50-dcn-YOLOv3 obj365_pretrain | quant_aware |  COCO  |     8     |   40.6 (-0.8)  |       37.5   |       34.1    |       66       |  14.64 | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_quant_aware.tar) |
W
whs 已提交
126 127 128



B
Bai Yifan 已提交
129
Dataset:WIDER-FACE
W
whs 已提交
130 131 132



B
Bai Yifan 已提交
133 134 135 136 137 138 139 140 141 142 143
|     Model      |   Method    | Image/GPU | Input Size |        Easy/Medium/Hard         | Model Size(MB) |                           Download                           |
| :------------: | :---------: | :-------: | :--------: | :-----------------------------: | :--------------: | :----------------------------------------------------------: |
|   BlazeFace    |      -      |     8     |    640     |         91.5/89.2/79.7          |       815        | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_original.tar) |
|   BlazeFace    | quant_post  |     8     |    640     | 87.8/85.1/74.9 (-3.7/-4.1/-4.8) |       228        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_origin_quant_post.tar) |
|   BlazeFace    | quant_aware |     8     |    640     | 90.5/87.9/77.6 (-1.0/-1.3/-2.1) |       228        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_origin_quant_aware.tar) |
| BlazeFace-Lite |      -      |     8     |    640     |         90.9/88.5/78.1          |       711        | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_lite.tar) |
| BlazeFace-Lite | quant_post  |     8     |    640     | 89.4/86.7/75.7 (-1.5/-1.8/-2.4) |       211        | [model]((https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_lite_quant_post.tar)) |
| BlazeFace-Lite | quant_aware |     8     |    640     | 89.7/87.3/77.0 (-1.2/-1.2/-1.1) |       211        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_lite_quant_aware.tar) |
| BlazeFace-NAS  |      -      |     8     |    640     |         83.7/80.7/65.8          |       244        | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas.tar) |
| BlazeFace-NAS  | quant_post  |     8     |    640     | 81.6/78.3/63.6 (-2.1/-2.4/-2.2) |        71        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_nas_quant_post.tar) |
| BlazeFace-NAS  | quant_aware |     8     |    640     | 83.1/79.7/64.2 (-0.6/-1.0/-1.6) |        71        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_nas_quant_aware.tar) |
W
whs 已提交
144

B
Bai Yifan 已提交
145
### 2.2 Pruning
W
whs 已提交
146

B
Bai Yifan 已提交
147
Dataset:Pasacl VOC & COCO 2017
W
whs 已提交
148

B
Bai Yifan 已提交
149 150 151 152 153 154 155 156 157 158 159 160
|             Model              |      Method       |  Dataset   | Image/GPU | Input 608 Box AP | Input 416 Box AP | Input 320 Box AP | Model Size(MB) | GFLOPs (608*608) |                           Download                           |
| :----------------------------: | :---------------: | :--------: | :-------: | :--------------: | :--------------: | :--------------: | :------------: | :--------------: | :----------------------------------------------------------: |
|      MobileNet-V1-YOLOv3       |     Baseline      | Pascal VOC |     8     |       76.2       |       76.7       |       75.3       |       94       |      40.49       | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
|      MobileNet-V1-YOLOv3       | sensitive -52.88% | Pascal VOC |     8     |   77.6 (+1.4)    |    77.7 (1.0)    |   75.5 (+0.2)    |       31       |      19.08       | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenet_v1_voc_prune.tar) |
|      MobileNet-V1-YOLOv3       |         -         |    COCO    |     8     |       29.3       |       29.3       |       27.0       |       95       |      41.35       | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
|      MobileNet-V1-YOLOv3       | sensitive -51.77% |    COCO    |     8     |   26.0 (-3.3)    |   25.1 (-4.2)    |   22.6 (-4.4)    |       32       |      19.94       | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenet_v1_prune.tar) |
|         R50-dcn-YOLOv3         |         -         |    COCO    |     8     |       39.1       |        -         |        -         |      177       |      89.60       | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn.tar) |
|         R50-dcn-YOLOv3         | sensitive -9.37%  |    COCO    |     8     |   39.3 (+0.2)    |        -         |        -         |      150       |      81.20       | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_prune.tar) |
|         R50-dcn-YOLOv3         | sensitive -24.68% |    COCO    |     8     |   37.3 (-1.8)    |        -         |        -         |      113       |      67.48       | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_prune578.tar) |
| R50-dcn-YOLOv3 obj365_pretrain |         -         |    COCO    |     8     |       41.4       |        -         |        -         |      177       |      89.60       | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_pretrained_coco.tar) |
| R50-dcn-YOLOv3 obj365_pretrain | sensitive -9.37%  |    COCO    |     8     |   40.5 (-0.9)    |        -         |        -         |      150       |      81.20       | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_prune.tar) |
| R50-dcn-YOLOv3 obj365_pretrain | sensitive -24.68% |    COCO    |     8     |   37.8 (-3.3)    |        -         |        -         |      113       |      67.48       | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_prune578.tar) |
W
whs 已提交
161

B
Bai Yifan 已提交
162
### 2.3 Distillation
W
whs 已提交
163

B
Bai Yifan 已提交
164
Dataset:Pasacl VOC & COCO 2017
W
whs 已提交
165 166


B
Bai Yifan 已提交
167 168 169 170 171 172 173 174
|        Model        |         Method          |  Dataset   | Image/GPU | Input 608 Box AP | Input 416 Box AP | Input 320 Box AP | Model Size(MB) |                           Download                           |
| :-----------------: | :---------------------: | :--------: | :-------: | :--------------: | :--------------: | :--------------: | :--------------: | :----------------------------------------------------------: |
| MobileNet-V1-YOLOv3 |            -            | Pascal VOC |     8     |       76.2       |       76.7       |       75.3       |        94        | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
|   ResNet34-YOLOv3   |            -            | Pascal VOC |     8     |       82.6       |       81.9       |       80.1       |       162        | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) |
| MobileNet-V1-YOLOv3 | ResNet34-YOLOv3 distill | Pascal VOC |     8     |   79.0 (+2.8)    |   78.2 (+1.5)    |   75.5 (+0.2)    |        94        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_voc_distilled.tar) |
| MobileNet-V1-YOLOv3 |            -            |    COCO    |     8     |       29.3       |       29.3       |       27.0       |        95        | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
|   ResNet34-YOLOv3   |            -            |    COCO    |     8     |       36.2       |       34.3       |       31.4       |       163        | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
| MobileNet-V1-YOLOv3 | ResNet34-YOLOv3 distill |    COCO    |     8     |   31.4 (+2.1)    |   30.0 (+0.7)    |   27.1 (+0.1)    |        95        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_distilled.tar) |
W
whs 已提交
175 176


C
ceci3 已提交
177 178 179 180 181 182 183 184
### 2.4 NAS

Dataset: WIDER-FACE

|      Model      |  Method   | Image/GPU | Input size |        Easy/Medium/Hard         |  volume(KB) |    latency(ms)|                         Download                             |
| :------------: | :---------: | :-------: | :------: | :-----------------------------: | :------------: | :------------: | :----------------------------------------------------------: |
|   BlazeFace    |      -      |     8     |   640    |         91.5/89.2/79.7          |      815       |       71.862     | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_original.tar) |
| BlazeFace-NAS  |      -      |     8     |   640    |         83.7/80.7/65.8          |      244       |       21.117     |[model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas.tar) |
C
ceci3 已提交
185
| BlazeFace-NASV2 |    SANAS    |     8     |   640    |         87.0/83.7/68.5          |      389       |       22.558     | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas2.tar) |
C
ceci3 已提交
186

C
ceci3 已提交
187
Note: latency is based on latency_855.txt, the file is test on 855 by PaddleLite。The config of BlazeFace-NASV2 is in [there](https://github.com/PaddlePaddle/PaddleDetection/blob/master/configs/face_detection/blazeface_nas_v2.yml).
C
ceci3 已提交
188

W
whs 已提交
189

C
ceci3 已提交
190
## 3. Image Segmentation
B
Bai Yifan 已提交
191
Dataset:Cityscapes
W
whs 已提交
192

B
Bai Yifan 已提交
193
### 3.1 Quantization
W
whs 已提交
194

B
Bai Yifan 已提交
195 196 197 198 199 200 201 202
|         Model          |   Method    |     mIoU      | Model Size(MB) |                           Download                           |
| :--------------------: | :---------: | :-----------: | :--------------: | :----------------------------------------------------------: |
| DeepLabv3+/MobileNetv1 |      -      |     63.26     |       6.6        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv1.tar ) |
| DeepLabv3+/MobileNetv1 | quant_post  | 58.63 (-4.63) |       1.8        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv1_2049x1025_quant_post.tar) |
| DeepLabv3+/MobileNetv1 | quant_aware | 62.03 (-1.23) |       1.8        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv1_2049x1025_quant_aware.tar) |
| DeepLabv3+/MobileNetv2 |      -      |     69.81     |       7.4        | [model](https://paddleseg.bj.bcebos.com/models/mobilenet_cityscapes.tgz) |
| DeepLabv3+/MobileNetv2 | quant_post  | 67.59 (-2.22) |       2.1        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv2_2049x1025_quant_post.tar) |
| DeepLabv3+/MobileNetv2 | quant_aware | 68.33 (-1.48) |       2.1        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv2_2049x1025_quant_aware.tar) |
W
whs 已提交
203

B
Bai Yifan 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
Image segmentation model PaddleLite latency (ms), input size 769x769

| Device       | Model                  | Method        | armv7 Thread 1 | armv7 Thread 2 | armv7 Thread 4 | armv8 Thread 1 | armv8 Thread 2 | armv8 Thread 4 |
| ------------ | ---------------------- | ------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- |
| Qualcomm 835 | Deeplabv3- MobileNetV1 | FP32 baseline | 1227.9894      | 734.1922       | 527.9592       | 1109.96        | 699.3818       | 479.0818       |
| Qualcomm 835 | Deeplabv3- MobileNetV1 | quant_aware   | 848.6544       | 512.785        | 382.9915       | 752.3573       | 455.0901       | 307.8808       |
| Qualcomm 835 | Deeplabv3- MobileNetV1 | quant_post    | 840.2323       | 510.103        | 371.9315       | 748.9401       | 452.1745       | 309.2084       |
| Qualcomm 835 | Deeplabv3-MobileNetV2  | FP32 baseline | 1282.8126      | 793.2064       | 653.6538       | 1193.9908      | 737.1827       | 593.4522       |
| Qualcomm 835 | Deeplabv3-MobileNetV2  | quant_aware   | 976.0495       | 659.0541       | 513.4279       | 892.1468       | 582.9847       | 484.7512       |
| Qualcomm 835 | Deeplabv3-MobileNetV2  | quant_post    | 981.44         | 658.4969       | 538.6166       | 885.3273       | 586.1284       | 484.0018       |
| Qualcomm 855 | Deeplabv3- MobileNetV1 | FP32 baseline | 568.8748       | 339.8578       | 278.6316       | 420.6031       | 281.3197       | 217.5222       |
| Qualcomm 855 | Deeplabv3- MobileNetV1 | quant_aware   | 608.7578       | 347.2087       | 260.653        | 241.2394       | 177.3456       | 143.9178       |
| Qualcomm 855 | Deeplabv3- MobileNetV1 | quant_post    | 609.0142       | 347.3784       | 259.9825       | 239.4103       | 180.1894       | 139.9178       |
| Qualcomm 855 | Deeplabv3-MobileNetV2  | FP32 baseline | 639.4425       | 390.1851       | 322.7014       | 477.7667       | 339.7411       | 262.2847       |
| Qualcomm 855 | Deeplabv3-MobileNetV2  | quant_aware   | 703.7275       | 497.689        | 417.1296       | 394.3586       | 300.2503       | 239.9204       |
| Qualcomm 855 | Deeplabv3-MobileNetV2  | quant_post    | 705.7589       | 474.4076       | 427.2951       | 394.8352       | 297.4035       | 264.6724       |
| Kirin 970    | Deeplabv3- MobileNetV1 | FP32 baseline | 1682.1792      | 1437.9774      | 1181.0246      | 1261.6739      | 1068.6537      | 690.8225       |
| Kirin 970    | Deeplabv3- MobileNetV1 | quant_aware   | 1062.3394      | 1248.1014      | 878.3157       | 774.6356       | 710.6277       | 528.5376       |
| Kirin 970    | Deeplabv3- MobileNetV1 | quant_post    | 1109.1917      | 1339.6218      | 866.3587       | 771.5164       | 716.5255       | 500.6497       |
| Kirin 970    | Deeplabv3-MobileNetV2  | FP32 baseline | 1771.1301      | 1746.0569      | 1222.4805      | 1448.9739      | 1192.4491      | 760.606        |
| Kirin 970    | Deeplabv3-MobileNetV2  | quant_aware   | 1320.2905      | 921.4522       | 676.0732       | 1145.8801      | 821.5685       | 590.1713       |
| Kirin 970    | Deeplabv3-MobileNetV2  | quant_post    | 1320.386       | 918.5328       | 672.2481       | 1020.753       | 820.094        | 591.4114       |
W
whs 已提交
226 227 228



B
Bai Yifan 已提交
229 230 231 232 233 234 235 236 237


### 3.2 Pruning

|   Model   |      Method       |     mIoU      | Model Size(MB) | GFLOPs |                           Download                           |
| :-------: | :---------------: | :-----------: | :--------------: | :----: | :----------------------------------------------------------: |
| fast-scnn |     baseline      |     69.64     |        11        | 14.41  | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/fast_scnn_cityscape.tar) |
| fast-scnn | uniform  -17.07%  | 69.58 (-0.06) |       8.5        | 11.95  | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/fast_scnn_cityscape_uniform-17.tar) |
| fast-scnn | sensitive -47.60% | 66.68 (-2.96) |       5.7        |  7.55  | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/fast_scnn_cityscape_sensitive-47.tar) |