sensitive.py 7.7 KB
Newer Older
W
wanghaoshuang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
wanghaoshuang 已提交
15 16
import sys
import os
17
import logging
W
wanghaoshuang 已提交
18
import pickle
W
wanghaoshuang 已提交
19
import numpy as np
Y
yukavio 已提交
20
import paddle
W
wanghaoshuang 已提交
21
from ..core import GraphWrapper
22
from ..common import get_logger
23
from ..analysis import flops
W
wanghaoshuang 已提交
24
from ..prune import Pruner
25 26

_logger = get_logger(__name__, level=logging.INFO)
W
wanghaoshuang 已提交
27

W
wanghaoshuang 已提交
28
__all__ = [
Y
yukavio 已提交
29
    "sensitivity", "load_sensitivities", "merge_sensitive", "get_ratios_by_loss"
W
wanghaoshuang 已提交
30
]
W
wanghaoshuang 已提交
31 32 33


def sensitivity(program,
W
wanghaoshuang 已提交
34
                place,
W
wanghaoshuang 已提交
35 36
                param_names,
                eval_func,
W
wanghaoshuang 已提交
37
                sensitivities_file=None,
38 39 40
                pruned_ratios=None,
                eval_args=None,
                criterion='l1_norm'):
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    """Compute the sensitivities of convolutions in a model. The sensitivity of a convolution is the losses of accuracy on test dataset in differenct pruned ratios. The sensitivities can be used to get a group of best ratios with some condition.
    This function return a dict storing sensitivities as below:

    .. code-block:: python

           {"weight_0":
               {0.1: 0.22,
                0.2: 0.33
               },
             "weight_1":
               {0.1: 0.21,
                0.2: 0.4
               }
           }

    ``weight_0`` is parameter name of convolution. ``sensitivities['weight_0']`` is a dict in which key is pruned ratio and value is the percent of losses.


    Args:
Y
yukavio 已提交
60 61
        program(paddle.static.Program): The program to be analysised.
        place(paddle.CPUPlace | paddle.CUDAPlace): The device place of filter parameters. 
62
        param_names(list): The parameter names of convolutions to be analysised. 
Y
yukavio 已提交
63
        eval_func(function): The callback function used to evaluate the model. It should accept a instance of `paddle.static.Program` as argument and return a score on test dataset.
64 65 66 67 68 69
        sensitivities_file(str): The file to save the sensitivities. It will append the latest computed sensitivities into the file. And the sensitivities in the file would not be computed again. This file can be loaded by `pickle` library.
        pruned_ratios(list): The ratios to be pruned. default: ``[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]``.

    Returns: 
        dict: A dict storing sensitivities.
    """
Y
yukavio 已提交
70
    scope = paddle.static.global_scope()
W
wanghaoshuang 已提交
71
    graph = GraphWrapper(program)
W
wanghaoshuang 已提交
72
    sensitivities = load_sensitivities(sensitivities_file)
W
wanghaoshuang 已提交
73

74 75 76
    if pruned_ratios is None:
        pruned_ratios = np.arange(0.1, 1, step=0.1)

W
wanghaoshuang 已提交
77 78
    for name in param_names:
        if name not in sensitivities:
W
wanghaoshuang 已提交
79
            sensitivities[name] = {}
W
wanghaoshuang 已提交
80 81
    baseline = None
    for name in sensitivities:
82
        for ratio in pruned_ratios:
W
wanghaoshuang 已提交
83
            if ratio in sensitivities[name]:
W
wanghaoshuang 已提交
84 85 86
                _logger.debug('{}, {} has computed.'.format(name, ratio))
                continue
            if baseline is None:
87 88 89 90
                if eval_args is None:
                    baseline = eval_func(graph.program)
                else:
                    baseline = eval_func(eval_args)
W
wanghaoshuang 已提交
91

92
            pruner = Pruner(criterion=criterion)
W
wanghaoshuang 已提交
93 94
            _logger.info("sensitive - param: {}; ratios: {}".format(name,
                                                                    ratio))
W
wanghaoshuang 已提交
95
            pruned_program, param_backup, _ = pruner.prune(
W
wanghaoshuang 已提交
96 97 98 99 100 101 102
                program=graph.program,
                scope=scope,
                params=[name],
                ratios=[ratio],
                place=place,
                lazy=True,
                only_graph=False,
W
wanghaoshuang 已提交
103
                param_backup=True)
104 105 106 107
            if eval_args is None:
                pruned_metric = eval_func(pruned_program)
            else:
                pruned_metric = eval_func(eval_args)
W
wanghaoshuang 已提交
108 109 110
            loss = (baseline - pruned_metric) / baseline
            _logger.info("pruned param: {}; {}; loss={}".format(name, ratio,
                                                                loss))
W
wanghaoshuang 已提交
111

W
wanghaoshuang 已提交
112
            sensitivities[name][ratio] = loss
W
wanghaoshuang 已提交
113

W
wanghaoshuang 已提交
114 115 116 117 118 119
            _save_sensitivities(sensitivities, sensitivities_file)

            # restore pruned parameters
            for param_name in param_backup.keys():
                param_t = scope.find_var(param_name).get_tensor()
                param_t.set(param_backup[param_name], place)
W
wanghaoshuang 已提交
120
    return sensitivities
W
wanghaoshuang 已提交
121 122


W
wanghaoshuang 已提交
123
def merge_sensitive(sensitivities):
124 125
    """Merge sensitivities.

W
wanghaoshuang 已提交
126 127 128 129
    Args:
      sensitivities(list<dict> | list<str>): The sensitivities to be merged. It cann be a list of sensitivities files or dict.

    Returns:
130
      dict: A dict stroring sensitivities.
W
wanghaoshuang 已提交
131 132 133
    """
    assert len(sensitivities) > 0
    if not isinstance(sensitivities[0], dict):
Y
yukavio 已提交
134
        sensitivities = [load_sensitivities(sen) for sen in sensitivities]
W
wanghaoshuang 已提交
135 136 137 138 139 140 141 142 143 144 145 146

    new_sensitivities = {}
    for sen in sensitivities:
        for param, losses in sen.items():
            if param not in new_sensitivities:
                new_sensitivities[param] = {}
            for percent, loss in losses.items():
                new_sensitivities[param][percent] = loss
    return new_sensitivities


def load_sensitivities(sensitivities_file):
147 148 149 150 151 152 153
    """Load sensitivities from file.

    Args:
       sensitivities_file(str):  The file storing sensitivities.

    Returns:
       dict: A dict stroring sensitivities.
W
wanghaoshuang 已提交
154 155 156 157 158 159 160 161 162
    """
    sensitivities = {}
    if sensitivities_file and os.path.exists(sensitivities_file):
        with open(sensitivities_file, 'rb') as f:
            if sys.version_info < (3, 0):
                sensitivities = pickle.load(f)
            else:
                sensitivities = pickle.load(f, encoding='bytes')
    return sensitivities
W
wanghaoshuang 已提交
163 164 165


def _save_sensitivities(sensitivities, sensitivities_file):
166 167 168 169 170
    """Save sensitivities into file.
    
    Args:
        sensitivities(dict): The sensitivities to be saved.
        sensitivities_file(str): The file to saved sensitivities.
W
wanghaoshuang 已提交
171
    """
W
wanghaoshuang 已提交
172 173
    with open(sensitivities_file, 'wb') as f:
        pickle.dump(sensitivities, f)
W
wanghaoshuang 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189


def get_ratios_by_loss(sensitivities, loss):
    """
    Get the max ratio of each parameter. The loss of accuracy must be less than given `loss`
    when the single parameter was pruned by the max ratio. 
    
    Args:
      
      sensitivities(dict): The sensitivities used to generate a group of pruning ratios. The key of dict
                           is name of parameters to be pruned. The value of dict is a list of tuple with
                           format `(pruned_ratio, accuracy_loss)`.
      loss(float): The threshold of accuracy loss.

    Returns:

190
      dict: A group of ratios. The key of dict is name of parameters while the value is the ratio to be pruned.
W
wanghaoshuang 已提交
191 192 193
    """
    ratios = {}
    for param, losses in sensitivities.items():
W
wanghaoshuang 已提交
194
        losses = losses.items()
195
        losses = list(losses)
W
wanghaoshuang 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209
        losses.sort()
        for i in range(len(losses))[::-1]:
            if losses[i][1] <= loss:
                if i == (len(losses) - 1):
                    ratios[param] = losses[i][0]
                else:
                    r0, l0 = losses[i]
                    r1, l1 = losses[i + 1]
                    d0 = loss - l0
                    d1 = l1 - loss

                    ratio = r0 + (loss - l0) * (r1 - r0) / (l1 - l0)
                    ratios[param] = ratio
                    if ratio > 1:
210
                        _logger.info(losses, ratio, (r1 - r0) / (l1 - l0), i)
W
wanghaoshuang 已提交
211 212 213

                break
    return ratios