model_zoo.md 33.6 KB
Newer Older
W
whs 已提交
1 2
# 模型库

B
Bai Yifan 已提交
3 4 5 6 7 8
## 1. 图象分类

数据集:ImageNet1000类

### 1.1 量化

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
| 模型 | 压缩方法 | Top-1/Top-5 Acc | 模型体积(MB) | TensorRT时延(V100, ms) | 下载 |
|:--:|:---:|:--:|:--:|:--:|:--:|
|MobileNetV1|-|70.99%/89.68%| 17 | -| [下载链接](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar) |
|MobileNetV1|quant_post|70.18%/89.25% (-0.81%/-0.43%)| 4.4 | - | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_quant_post.tar) |
|MobileNetV1|quant_aware|70.60%/89.57% (-0.39%/-0.11%)| 4.4 | -| [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_quant_aware.tar) |
| MobileNetV2 | - |72.15%/90.65%| 15 | - | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) |
| MobileNetV2 | quant_post | 71.15%/90.11% (-1%/-0.54%)| 4.0   | - | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV2_quant_post.tar) |
| MobileNetV2 | quant_aware |72.05%/90.63% (-0.1%/-0.02%)| 4.0 | - | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV2_quant_aware.tar) |
|ResNet50|-|76.50%/93.00%| 99 | 2.71 | [下载链接](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar) |
|ResNet50|quant_post|76.33%/93.02% (-0.17%/+0.02%)| 25.1| 1.19 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet50_quant_post.tar) |
|ResNet50|quant_aware|	76.48%/93.11% (-0.02%/+0.11%)| 25.1 | 1.17 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet50_quant_awre.tar) |

<table border=0 cellpadding=0 cellspacing=0 width=861 style='border-collapse:
 collapse;table-layout:fixed;width:644pt'>
 <col width=87 style='width:65pt'>
 <col width=124 style='mso-width-source:userset;mso-width-alt:3968;width:93pt'>
 <col width=128 style='mso-width-source:userset;mso-width-alt:4096;width:96pt'>
 <col width=87 span=6 style='width:65pt'>
 <tr height=21 style='height:16.0pt'>
  <td colspan=3 height=21 class=xl63 width=339 style='height:16.0pt;width:254pt'>分类模型Lite时延(ms)</td>
  <td colspan=3 class=xl63 width=261 style='width:195pt'>armv7</td>
  <td colspan=3 class=xl63 width=261 style='width:195pt'>armv8</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td height=21 class=xl63 style='height:16.0pt'>设备</td>
  <td class=xl63>模型类型</td>
  <td class=xl63>压缩策略</td>
  <td class=xl63>Thread 1</td>
  <td class=xl63>Thread 2</td>
  <td class=xl63>Thread 4</td>
  <td class=xl63>Thread 1</td>
  <td class=xl63>Thread 2</td>
  <td class=xl63>Thread 4</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td rowspan=9 height=189 class=xl63 style='height:144.0pt'>高通835</td>
  <td rowspan=3 class=xl63>MobileNetV1</td>
  <td class=xl63>FP32 baseline</td>
  <td class=xl63>96.1942</td>
  <td class=xl63>53.2058</td>
  <td class=xl63>32.4468</td>
  <td class=xl63>88.4955</td>
  <td class=xl63>47.95</td>
  <td class=xl63>27.5189</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td height=21 class=xl63 style='height:16.0pt'>quant_aware</td>
  <td class=xl63>60.8186</td>
  <td class=xl63>32.1931</td>
  <td class=xl63>16.4275</td>
  <td class=xl63>56.4311</td>
  <td class=xl63>29.5446</td>
  <td class=xl63>15.1053</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td height=21 class=xl63 style='height:16.0pt'>quant_post</td>
  <td class=xl63>60.5615</td>
  <td class=xl63>32.4016</td>
  <td class=xl63>16.6596</td>
  <td class=xl63>56.5266</td>
  <td class=xl63>29.7178</td>
  <td class=xl63>15.1459</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td rowspan=3 height=63 class=xl63 style='height:48.0pt'>MobileNetV2</td>
  <td class=xl63>FP32 baseline</td>
  <td class=xl63>65.715</td>
  <td class=xl63>38.1346</td>
  <td class=xl63>25.155</td>
  <td class=xl63>61.3593</td>
  <td class=xl63>36.2038</td>
  <td class=xl63>22.849</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td height=21 class=xl63 style='height:16.0pt'>quant_aware</td>
  <td class=xl63>48.3655</td>
  <td class=xl63>30.2021</td>
  <td class=xl63>21.9303</td>
  <td class=xl63>46.1487</td>
  <td class=xl63>27.3146</td>
  <td class=xl63>18.3053</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td height=21 class=xl63 style='height:16.0pt'>quant_post</td>
  <td class=xl63>48.3495</td>
  <td class=xl63>30.3069</td>
  <td class=xl63>22.1506</td>
  <td class=xl63>45.8715</td>
  <td class=xl63>27.4105</td>
  <td class=xl63>18.2223</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td rowspan=3 height=63 class=xl63 style='height:48.0pt'>ResNet50</td>
  <td class=xl63>FP32 baseline</td>
  <td class=xl63>526.811</td>
  <td class=xl63>319.6486</td>
  <td class=xl63>205.8345</td>
  <td class=xl63>506.1138</td>
  <td class=xl63>335.1584</td>
  <td class=xl63>214.8936</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td height=21 class=xl63 style='height:16.0pt'>quant_aware</td>
  <td class=xl63>475.4538</td>
  <td class=xl63>256.8672</td>
  <td class=xl63>139.699</td>
  <td class=xl63>461.7344</td>
  <td class=xl63>247.9506</td>
  <td class=xl63>145.9847</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td height=21 class=xl63 style='height:16.0pt'>quant_post</td>
  <td class=xl63>476.0507</td>
  <td class=xl63>256.5963</td>
  <td class=xl63>139.7266</td>
  <td class=xl63>461.9176</td>
  <td class=xl63>248.3795</td>
  <td class=xl63>149.353</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td rowspan=9 height=189 class=xl63 style='height:144.0pt'>高通855</td>
  <td rowspan=3 class=xl63>MobileNetV1</td>
  <td class=xl63>FP32 baseline</td>
  <td class=xl63>33.5086</td>
  <td class=xl63>19.5773</td>
  <td class=xl63>11.7534</td>
  <td class=xl63>31.3474</td>
  <td class=xl63>18.5382</td>
  <td class=xl63>10.0811</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td height=21 class=xl63 style='height:16.0pt'>quant_aware</td>
  <td class=xl63>36.7067</td>
  <td class=xl63>21.628</td>
  <td class=xl63>11.0372</td>
  <td class=xl63>14.0238</td>
  <td class=xl63>8.199</td>
  <td class=xl63>4.2588</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td height=21 class=xl63 style='height:16.0pt'>quant_post</td>
  <td class=xl63>37.0498</td>
  <td class=xl63>21.7081</td>
  <td class=xl63>11.0779</td>
  <td class=xl63>14.0947</td>
  <td class=xl63>8.1926</td>
  <td class=xl63>4.2934</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td rowspan=3 height=63 class=xl63 style='height:48.0pt'>MobileNetV2</td>
  <td class=xl63>FP32 baseline</td>
  <td class=xl63>25.0396</td>
  <td class=xl63>15.2862</td>
  <td class=xl63>9.6609</td>
  <td class=xl63>22.909</td>
  <td class=xl63>14.1797</td>
  <td class=xl63>8.8325</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td height=21 class=xl63 style='height:16.0pt'>quant_aware</td>
  <td class=xl63>28.1583</td>
  <td class=xl63>18.3317</td>
  <td class=xl63>11.8103</td>
  <td class=xl63>16.9158</td>
  <td class=xl63>11.1606</td>
  <td class=xl63>7.4148</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td height=21 class=xl63 style='height:16.0pt'>quant_post</td>
  <td class=xl63>28.1631</td>
  <td class=xl63>18.3917</td>
  <td class=xl63>11.8333</td>
  <td class=xl63>16.9399</td>
  <td class=xl63>11.1772</td>
  <td class=xl63>7.4176</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td rowspan=3 height=63 class=xl63 style='height:48.0pt'>ResNet50</td>
  <td class=xl63>FP32 baseline</td>
  <td class=xl63>185.3705</td>
  <td class=xl63>113.0825</td>
  <td class=xl63>87.0741</td>
  <td class=xl63>177.7367</td>
  <td class=xl63>110.0433</td>
  <td class=xl63>74.4114</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td height=21 class=xl63 style='height:16.0pt'>quant_aware</td>
  <td class=xl63>327.6883</td>
  <td class=xl63>202.4536</td>
  <td class=xl63>106.243</td>
  <td class=xl63>243.5621</td>
  <td class=xl63>150.0542</td>
  <td class=xl63>78.4205</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td height=21 class=xl63 style='height:16.0pt'>quant_post</td>
  <td class=xl63>328.2683</td>
  <td class=xl63>201.9937</td>
  <td class=xl63>106.744</td>
  <td class=xl63>242.6397</td>
  <td class=xl63>150.0338</td>
  <td class=xl63>79.8659</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td rowspan=9 height=189 class=xl63 style='height:144.0pt'>麒麟970</td>
  <td rowspan=3 class=xl63>MobileNetV1</td>
  <td class=xl63>FP32 baseline</td>
  <td class=xl63>101.2455</td>
  <td class=xl63>56.4053</td>
  <td class=xl63>35.6484</td>
  <td class=xl63>94.8985</td>
  <td class=xl63>51.7251</td>
  <td class=xl63>31.9511</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td height=21 class=xl63 style='height:16.0pt'>quant_aware</td>
  <td class=xl63>62.5012</td>
  <td class=xl63>32.1863</td>
  <td class=xl63>16.6018</td>
  <td class=xl63>57.7477</td>
  <td class=xl63>29.2116</td>
  <td class=xl63>15.0703</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td height=21 class=xl63 style='height:16.0pt'>quant_post</td>
  <td class=xl63>62.4412</td>
  <td class=xl63>32.2585</td>
  <td class=xl63>16.6215</td>
  <td class=xl63>57.825</td>
  <td class=xl63>29.2573</td>
  <td class=xl63>15.1206</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td rowspan=3 height=63 class=xl63 style='height:48.0pt'>MobileNetV2</td>
  <td class=xl63>FP32 baseline</td>
  <td class=xl63>70.4176</td>
  <td class=xl63>42.0795</td>
  <td class=xl63>25.1939</td>
  <td class=xl63>68.9597</td>
  <td class=xl63>39.2145</td>
  <td class=xl63>22.6617</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td height=21 class=xl63 style='height:16.0pt'>quant_aware</td>
  <td class=xl63>52.9961</td>
  <td class=xl63>31.5323</td>
  <td class=xl63>22.1447</td>
  <td class=xl63>49.4858</td>
  <td class=xl63>28.0856</td>
  <td class=xl63>18.7287</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td height=21 class=xl63 style='height:16.0pt'>quant_post</td>
  <td class=xl63>53.0961</td>
  <td class=xl63>31.7987</td>
  <td class=xl63>21.8334</td>
  <td class=xl63>49.383</td>
  <td class=xl63>28.2358</td>
  <td class=xl63>18.3642</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td rowspan=3 height=63 class=xl63 style='height:48.0pt'>ResNet50</td>
  <td class=xl63>FP32 baseline</td>
  <td class=xl63>586.8943</td>
  <td class=xl63>344.0858</td>
  <td class=xl63>228.2293</td>
  <td class=xl63>573.3344</td>
  <td class=xl63>351.4332</td>
  <td class=xl63>225.8006</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td height=21 class=xl63 style='height:16.0pt'>quant_aware</td>
  <td class=xl63>488.361</td>
  <td class=xl63>260.1697</td>
  <td class=xl63>142.416</td>
  <td class=xl63>479.5668</td>
  <td class=xl63>249.8485</td>
  <td class=xl63>138.1742</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td height=21 class=xl63 style='height:16.0pt'>quant_post</td>
  <td class=xl63>489.6188</td>
  <td class=xl63>258.3279</td>
  <td class=xl63>142.6063</td>
  <td class=xl63>480.0064</td>
  <td class=xl63>249.5339</td>
  <td class=xl63>138.5284</td>
 </tr>
 <![if supportMisalignedColumns]>
 <tr height=0 style='display:none'>
  <td width=87 style='width:65pt'></td>
  <td width=124 style='width:93pt'></td>
  <td width=128 style='width:96pt'></td>
  <td width=87 style='width:65pt'></td>
  <td width=87 style='width:65pt'></td>
  <td width=87 style='width:65pt'></td>
  <td width=87 style='width:65pt'></td>
  <td width=87 style='width:65pt'></td>
  <td width=87 style='width:65pt'></td>
 </tr>
 <![endif]>
</table>
B
Bai Yifan 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356



### 1.2 剪裁


| 模型 | 压缩方法 | Top-1/Top-5 Acc | 模型体积(MB) | GFLOPs | 下载 |
|:--:|:---:|:--:|:--:|:--:|:--:|
| MobileNetV1 |    Baseline    |         70.99%/89.68%         |       17       |  1.11  | [下载链接](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar) |
| MobileNetV1 |  uniform -50%  | 69.4%/88.66% (-1.59%/-1.02%)  |       9        |  0.56  | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_uniform-50.tar) |
| MobileNetV1 | sensitive -30% |  70.4%/89.3% (-0.59%/-0.38%)  |       12       |  0.74  | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_sensitive-30.tar) |
| MobileNetV1 | sensitive -50% | 69.8% / 88.9% (-1.19%/-0.78%) |       9        |  0.56  | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_sensitive-50.tar) |
| MobileNetV2 |       -        |         72.15%/90.65%         |       15       |  0.59  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) |
| MobileNetV2 |  uniform -50%  | 65.79%/86.11% (-6.35%/-4.47%) |       11       | 0.296  | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV2_uniform-50.tar) |
|  ResNet34   |       -        |         72.15%/90.65%         |       84       |  7.36  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar) |
|  ResNet34   |  uniform -50%  | 70.99%/89.95% (-1.36%/-0.87%) |       41       |  3.67  | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet34_uniform-50.tar) |
|  ResNet34   |  auto -55.05%  | 70.24%/89.63% (-2.04%/-1.06%) |       33       |  3.31  | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet34_auto-55.tar) |




### 1.3 蒸馏

| 模型 | 压缩方法 | Top-1/Top-5 Acc | 模型体积(MB) | 下载 |
|:--:|:---:|:--:|:--:|:--:|
| MobileNetV1 |                     student                     |  70.99%/89.68%  |       17       | [下载链接](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar) |
|ResNet50_vd|teacher|79.12%/94.44%| 99 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar) |
|MobileNetV1|ResNet50_vd<sup>[1](#trans1)</sup> distill|72.77%/90.68% (+1.78%/+1.00%)| 17 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_distilled.tar) |
| MobileNetV2 |                     student                     |  72.15%/90.65%  |       15       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) |
| MobileNetV2 |            ResNet50_vd distill             |  74.28%/91.53% (+2.13%/+0.88%)  |       15       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV2_distilled.tar) |
|  ResNet50   |                     student                     |  76.50%/93.00%  |       99       | [下载链接](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar) |
|ResNet101|teacher|77.56%/93.64%| 173 | [下载链接](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar) |
|  ResNet50   |             ResNet101 distill              |  77.29%/93.65% (+0.79%/+0.65%)  |       99       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet50_distilled.tar) |

!!! note "Note"

    <a name="trans1">[1]</a>:带_vd后缀代表该预训练模型使用了Mixup,Mixup相关介绍参考[mixup: Beyond Empirical Risk Minimization](https://arxiv.org/abs/1710.09412)


## 2. 目标检测

### 2.1 量化

数据集: COCO 2017

357 358 359 360 361 362 363 364 365 366
|              模型              |  压缩方法   | 数据集 | Image/GPU | 输入608 Box AP | 输入416 Box AP | 输入320 Box AP | 模型体积(MB) |   TensorRT时延(V100, ms) |  下载     |
| :----------------------------: | :---------: | :----: | :-------: | :------------: | :------------: | :------------: | :------------: | :----------: |:----------: |
|      MobileNet-V1-YOLOv3       |      -      |  COCO  |     8     |      29.3      |      29.3      |      27.1      |       95       |  - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
|      MobileNet-V1-YOLOv3       | quant_post  |  COCO  |     8     |     27.9 (-1.4)|	28.0 (-1.3)	  |    26.0 (-1.0) |       25       | -  | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_quant_post.tar) |
|      MobileNet-V1-YOLOv3       | quant_aware |  COCO  |     8     |     28.1 (-1.2)|  28.2 (-1.1)	  |    25.8 (-1.2) |       26.3     | -  | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenet_coco_quant_aware.tar) |
|      R34-YOLOv3                |      -      |  COCO  |     8     |      36.2      |      34.3      |      31.4      |       162       |  - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
|      R34-YOLOv3                | quant_post  |  COCO  |     8     | 35.7 (-0.5)    |      -         |      -         |       42.7      |  - | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r34_coco_quant_post.tar) |
|      R34-YOLOv3                | quant_aware |  COCO  |     8     |  35.2 (-1.0)   | 33.3 (-1.0)    |     30.3 (-1.1)|       44       |  - | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r34_coco_quant_aware.tar) |
| R50-dcn-YOLOv3 obj365_pretrain |      -      |  COCO  |     8     |      41.4      |       -      |       -       |       177       | 18.56  |[下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_pretrained_coco.tar) |
| R50-dcn-YOLOv3 obj365_pretrain | quant_aware |  COCO  |     8     |   40.6 (-0.8)  |       37.5   |       34.1    |       66       |  14.64 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_quant_aware.tar) |
B
Bai Yifan 已提交
367 368 369 370 371 372 373



数据集:WIDER-FACE



374 375 376 377 378 379 380 381 382 383 384
|      模型      |  压缩方法   | Image/GPU | 输入尺寸 |        Easy/Medium/Hard         | 模型体积(MB) |                             下载                             |
| :------------: | :---------: | :-------: | :------: | :-----------------------------: | :------------: | :----------------------------------------------------------: |
|   BlazeFace    |      -      |     8     |   640    |         91.5/89.2/79.7          |      815       | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_original.tar) |
|   BlazeFace    | quant_post  |     8     |   640    | 87.8/85.1/74.9 (-3.7/-4.1/-4.8) |      228       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_origin_quant_post.tar) |
|   BlazeFace    | quant_aware |     8     |   640    | 90.5/87.9/77.6 (-1.0/-1.3/-2.1) |      228       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_origin_quant_aware.tar) |
| BlazeFace-Lite |      -      |     8     |   640    |         90.9/88.5/78.1          |      711       | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_lite.tar) |
| BlazeFace-Lite | quant_post  |     8     |   640    | 89.4/86.7/75.7 (-1.5/-1.8/-2.4) |      211       | [下载链接]((https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_lite_quant_post.tar)) |
| BlazeFace-Lite | quant_aware |     8     |   640    | 89.7/87.3/77.0 (-1.2/-1.2/-1.1) |      211       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_lite_quant_aware.tar) |
| BlazeFace-NAS  |      -      |     8     |   640    |         83.7/80.7/65.8          |      244       | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas.tar) |
| BlazeFace-NAS  | quant_post  |     8     |   640    | 81.6/78.3/63.6 (-2.1/-2.4/-2.2) |       71       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_nas_quant_post.tar) |
| BlazeFace-NAS  | quant_aware |     8     |   640    | 83.1/79.7/64.2 (-0.6/-1.0/-1.6) |       71       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_nas_quant_aware.tar) |
B
Bai Yifan 已提交
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423

### 2.2 剪裁

数据集:Pasacl VOC & COCO 2017

|              模型              |     压缩方法      |   数据集   | Image/GPU | 输入608 Box AP | 输入416 Box AP | 输入320 Box AP | 模型体积(MB) | GFLOPs (608*608) |                             下载                             |
| :----------------------------: | :---------------: | :--------: | :-------: | :------------: | :------------: | :------------: | :----------: | :--------------: | :----------------------------------------------------------: |
|      MobileNet-V1-YOLOv3       |     Baseline      | Pascal VOC |     8     |      76.2      |      76.7      |      75.3      |      94      |      40.49       | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
|      MobileNet-V1-YOLOv3       | sensitive -52.88% | Pascal VOC |     8     |  77.6 (+1.4)   |   77.7 (1.0)   |  75.5 (+0.2)   |      31      |      19.08       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenet_v1_voc_prune.tar) |
|      MobileNet-V1-YOLOv3       |         -         |    COCO    |     8     |      29.3      |      29.3      |      27.0      |      95      |      41.35       | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
|      MobileNet-V1-YOLOv3       | sensitive -51.77% |    COCO    |     8     |  26.0 (-3.3)   |  25.1 (-4.2)   |  22.6 (-4.4)   |      32      |      19.94       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenet_v1_prune.tar) |
|         R50-dcn-YOLOv3         |         -         |    COCO    |     8     |      39.1      |       -        |       -        |     177      |      89.60       | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn.tar) |
|         R50-dcn-YOLOv3         | sensitive -9.37%  |    COCO    |     8     |  39.3 (+0.2)   |       -        |       -        |     150      |      81.20       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_prune.tar) |
|         R50-dcn-YOLOv3         | sensitive -24.68% |    COCO    |     8     |  37.3 (-1.8)   |       -        |       -        |     113      |      67.48       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_prune578.tar) |
| R50-dcn-YOLOv3 obj365_pretrain |         -         |    COCO    |     8     |      41.4      |       -        |       -        |     177      |      89.60       | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_pretrained_coco.tar) |
| R50-dcn-YOLOv3 obj365_pretrain | sensitive -9.37%  |    COCO    |     8     |  40.5 (-0.9)   |       -        |       -        |     150      |      81.20       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_prune.tar) |
| R50-dcn-YOLOv3 obj365_pretrain | sensitive -24.68% |    COCO    |     8     |  37.8 (-3.3)   |       -        |       -        |     113      |      67.48       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_prune578.tar) |

### 2.3 蒸馏

数据集:Pasacl VOC & COCO 2017


|        模型         |        压缩方法         |   数据集   | Image/GPU | 输入608 Box AP | 输入416 Box AP | 输入320 Box AP | 模型体积(MB) |                             下载                             |
| :-----------------: | :---------------------: | :--------: | :-------: | :------------: | :------------: | :------------: | :------------: | :----------------------------------------------------------: |
| MobileNet-V1-YOLOv3 |            -            | Pascal VOC |     8     |      76.2      |      76.7      |      75.3      |       94       | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
|   ResNet34-YOLOv3   |            -            | Pascal VOC |     8     |      82.6      |      81.9      |      80.1      |      162       | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) |
| MobileNet-V1-YOLOv3 | ResNet34-YOLOv3 distill | Pascal VOC |     8     |  79.0 (+2.8)   |  78.2 (+1.5)   |  75.5 (+0.2)   |       94       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_voc_distilled.tar) |
| MobileNet-V1-YOLOv3 |            -            |    COCO    |     8     |      29.3      |      29.3      |      27.0      |       95       | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
|   ResNet34-YOLOv3   |            -            |    COCO    |     8     |      36.2      |      34.3      |      31.4      |      163       | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
| MobileNet-V1-YOLOv3 | ResNet34-YOLOv3 distill |    COCO    |     8     |  31.4 (+2.1)   |  30.0 (+0.7)   |  27.1 (+0.1)   |       95       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_distilled.tar) |


## 3. 图像分割

数据集:Cityscapes

### 3.1 量化

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
|          模型          |  压缩方法   |     mIoU      | 模型体积(MB) |                             下载                             |
| :--------------------: | :---------: | :-----------: | :------------: | :----------------------------------------------------------: |
| DeepLabv3+/MobileNetv1 |      -      |     63.26     |      6.6       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv1.tar )                         |
| DeepLabv3+/MobileNetv1 | quant_post  | 58.63 (-4.63) |      1.8       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv1_2049x1025_quant_post.tar) |
| DeepLabv3+/MobileNetv1 | quant_aware | 62.03 (-1.23) |      1.8       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv1_2049x1025_quant_aware.tar) |
| DeepLabv3+/MobileNetv2 |      -      |     69.81     |      7.4       | [下载链接](https://paddleseg.bj.bcebos.com/models/mobilenet_cityscapes.tgz) |
| DeepLabv3+/MobileNetv2 | quant_post  | 67.59 (-2.22) |      2.1       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv2_2049x1025_quant_post.tar) |
| DeepLabv3+/MobileNetv2 | quant_aware | 68.33 (-1.48) |      2.1       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv2_2049x1025_quant_aware.tar) |

<br/>

<table border=0 cellpadding=0 cellspacing=0 width=841 style='border-collapse:
 collapse;table-layout:fixed;width:629pt'>
 <col width=87 style='width:65pt'>
 <col width=105 style='mso-width-source:userset;mso-width-alt:3370;width:79pt'>
 <col width=127 style='mso-width-source:userset;mso-width-alt:4053;width:95pt'>
 <col width=87 span=6 style='width:65pt'>
 <tr height=21 style='height:16.0pt'>
  <td colspan=3 height=21 class=xl65 width=319 style='height:16.0pt;width:239pt'>图像分割模型Lite时延(ms),
  输入尺寸769x769</td>
  <td colspan=3 class=xl65 width=261 style='width:195pt'>armv7</td>
  <td colspan=3 class=xl65 width=261 style='width:195pt'>armv8</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td height=21 class=xl65 style='height:16.0pt'>设备</td>
  <td class=xl65>模型类型</td>
  <td class=xl65>压缩策略</td>
  <td class=xl65>Thread 1</td>
  <td class=xl65>Thread 2</td>
  <td class=xl65>Thread 4</td>
  <td class=xl65>Thread 1</td>
  <td class=xl65>Thread 2</td>
  <td class=xl65>Thread 4</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td rowspan=6 height=126 class=xl65 style='height:96.0pt'>高通835</td>
  <td rowspan=3 class=xl66 width=105 style='width:79pt'>Deeplabv3- MobileNetV1</td>
  <td class=xl65>FP32 baseline</td>
  <td class=xl65>1227.9894</td>
  <td class=xl65>734.1922</td>
  <td class=xl65>527.9592</td>
  <td class=xl65>1109.96</td>
  <td class=xl65>699.3818</td>
  <td class=xl65>479.0818</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td height=21 class=xl65 style='height:16.0pt'>quant_aware</td>
  <td class=xl65>848.6544</td>
  <td class=xl65>512.785</td>
  <td class=xl65>382.9915</td>
  <td class=xl65>752.3573</td>
  <td class=xl65>455.0901</td>
  <td class=xl65>307.8808</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td height=21 class=xl65 style='height:16.0pt'>quant_post</td>
  <td class=xl65>840.2323</td>
  <td class=xl65>510.103</td>
  <td class=xl65>371.9315</td>
  <td class=xl65>748.9401</td>
  <td class=xl65>452.1745</td>
  <td class=xl65>309.2084</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td rowspan=3 height=63 class=xl66 width=105 style='height:48.0pt;width:79pt'>Deeplabv3-MobileNetV2</td>
  <td class=xl65>FP32 baseline</td>
  <td class=xl65>1282.8126</td>
  <td class=xl65>793.2064</td>
  <td class=xl65>653.6538</td>
  <td class=xl65>1193.9908</td>
  <td class=xl65>737.1827</td>
  <td class=xl65>593.4522</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td height=21 class=xl65 style='height:16.0pt'>quant_aware</td>
  <td class=xl65>976.0495</td>
  <td class=xl65>659.0541</td>
  <td class=xl65>513.4279</td>
  <td class=xl65>892.1468</td>
  <td class=xl65>582.9847</td>
  <td class=xl65>484.7512</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td height=21 class=xl65 style='height:16.0pt'>quant_post</td>
  <td class=xl65>981.44</td>
  <td class=xl65>658.4969</td>
  <td class=xl65>538.6166</td>
  <td class=xl65>885.3273</td>
  <td class=xl65>586.1284</td>
  <td class=xl65>484.0018</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td rowspan=6 height=126 class=xl65 style='height:96.0pt'>高通855</td>
  <td rowspan=3 class=xl66 width=105 style='width:79pt'>Deeplabv3-MobileNetV1</td>
  <td class=xl65>FP32 baseline</td>
  <td class=xl65>568.8748</td>
  <td class=xl65>339.8578</td>
  <td class=xl65>278.6316</td>
  <td class=xl65>420.6031</td>
  <td class=xl65>281.3197</td>
  <td class=xl65>217.5222</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td height=21 class=xl65 style='height:16.0pt'>quant_aware</td>
  <td class=xl65>608.7578</td>
  <td class=xl65>347.2087</td>
  <td class=xl65>260.653</td>
  <td class=xl65>241.2394</td>
  <td class=xl65>177.3456</td>
  <td class=xl65>143.9178</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td height=21 class=xl65 style='height:16.0pt'>quant_post</td>
  <td class=xl65>609.0142</td>
  <td class=xl65>347.3784</td>
  <td class=xl65>259.9825</td>
  <td class=xl65>239.4103</td>
  <td class=xl65>180.1894</td>
  <td class=xl65>139.9178</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td rowspan=3 height=63 class=xl66 width=105 style='height:48.0pt;width:79pt'>Deeplabv3-MobileNetV2</td>
  <td class=xl65>FP32 baseline</td>
  <td class=xl65>639.4425</td>
  <td class=xl65>390.1851</td>
  <td class=xl65>322.7014</td>
  <td class=xl65>477.7667</td>
  <td class=xl65>339.7411</td>
  <td class=xl65>262.2847</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td height=21 class=xl65 style='height:16.0pt'>quant_aware</td>
  <td class=xl65>703.7275</td>
  <td class=xl65>497.689</td>
  <td class=xl65>417.1296</td>
  <td class=xl65>394.3586</td>
  <td class=xl65>300.2503</td>
  <td class=xl65>239.9204</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td height=21 class=xl65 style='height:16.0pt'>quant_post</td>
  <td class=xl65>705.7589</td>
  <td class=xl65>474.4076</td>
  <td class=xl65>427.2951</td>
  <td class=xl65>394.8352</td>
  <td class=xl65>297.4035</td>
  <td class=xl65>264.6724</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td rowspan=6 height=126 class=xl65 style='height:96.0pt'>麒麟970</td>
  <td rowspan=3 class=xl66 width=105 style='width:79pt'>Deeplabv3-MobileNetV1</td>
  <td class=xl65>FP32 baseline</td>
  <td class=xl65>1682.1792</td>
  <td class=xl65>1437.9774</td>
  <td class=xl65>1181.0246</td>
  <td class=xl65>1261.6739</td>
  <td class=xl65>1068.6537</td>
  <td class=xl65>690.8225</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td height=21 class=xl65 style='height:16.0pt'>quant_aware</td>
  <td class=xl65>1062.3394</td>
  <td class=xl65>1248.1014</td>
  <td class=xl65>878.3157</td>
  <td class=xl65>774.6356</td>
  <td class=xl65>710.6277</td>
  <td class=xl65>528.5376</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td height=21 class=xl65 style='height:16.0pt'>quant_post</td>
  <td class=xl65>1109.1917</td>
  <td class=xl65>1339.6218</td>
  <td class=xl65>866.3587</td>
  <td class=xl65>771.5164</td>
  <td class=xl65>716.5255</td>
  <td class=xl65>500.6497</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td rowspan=3 height=63 class=xl66 width=105 style='height:48.0pt;width:79pt'>Deeplabv3-MobileNetV2</td>
  <td class=xl65>FP32 baseline</td>
  <td class=xl65>1771.1301</td>
  <td class=xl65>1746.0569</td>
  <td class=xl65>1222.4805</td>
  <td class=xl65>1448.9739</td>
  <td class=xl65>1192.4491</td>
  <td class=xl65>760.606</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td height=21 class=xl65 style='height:16.0pt'>quant_aware</td>
  <td class=xl65>1320.2905</td>
  <td class=xl65>921.4522</td>
  <td class=xl65>676.0732</td>
  <td class=xl65>1145.8801</td>
  <td class=xl65>821.5685</td>
  <td class=xl65>590.1713</td>
 </tr>
 <tr height=21 style='height:16.0pt'>
  <td height=21 class=xl65 style='height:16.0pt'>quant_post</td>
  <td class=xl65>1320.386</td>
  <td class=xl65>918.5328</td>
  <td class=xl65>672.2481</td>
  <td class=xl65>1020.753</td>
  <td class=xl65>820.094</td>
  <td class=xl65>591.4114</td>
 </tr>
 <![if supportMisalignedColumns]>
 <tr height=0 style='display:none'>
  <td width=87 style='width:65pt'></td>
  <td width=105 style='width:79pt'></td>
  <td width=127 style='width:95pt'></td>
  <td width=87 style='width:65pt'></td>
  <td width=87 style='width:65pt'></td>
  <td width=87 style='width:65pt'></td>
  <td width=87 style='width:65pt'></td>
  <td width=87 style='width:65pt'></td>
  <td width=87 style='width:65pt'></td>
 </tr>
 <![endif]>
</table>
B
Bai Yifan 已提交
643 644 645 646 647 648 649 650

### 3.2 剪裁

|   模型    |     压缩方法      |     mIoU      | 模型体积(MB) | GFLOPs |                             下载                             |
| :-------: | :---------------: | :-----------: | :------------: | :----: | :----------------------------------------------------------: |
| fast-scnn |     baseline      |     69.64     |       11       | 14.41  | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/fast_scnn_cityscape.tar) |
| fast-scnn | uniform  -17.07%  | 69.58 (-0.06) |      8.5       | 11.95  | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/fast_scnn_cityscape_uniform-17.tar) |
| fast-scnn | sensitive -47.60% | 66.68 (-2.96) |      5.7       |  7.55  | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/fast_scnn_cityscape_sensitive-47.tar) |