# 模型库
## 1. 图象分类
数据集:ImageNet1000类
### 1.1 量化
| 模型 | 压缩方法 | Top-1/Top-5 Acc | 模型体积(MB) | TensorRT时延(V100, ms) | 下载 |
|:--:|:---:|:--:|:--:|:--:|:--:|
|MobileNetV1|-|70.99%/89.68%| 17 | -| [下载链接](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar) |
|MobileNetV1|quant_post|70.18%/89.25% (-0.81%/-0.43%)| 4.4 | - | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_quant_post.tar) |
|MobileNetV1|quant_aware|70.60%/89.57% (-0.39%/-0.11%)| 4.4 | -| [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_quant_aware.tar) |
| MobileNetV2 | - |72.15%/90.65%| 15 | - | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) |
| MobileNetV2 | quant_post | 71.15%/90.11% (-1%/-0.54%)| 4.0 | - | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV2_quant_post.tar) |
| MobileNetV2 | quant_aware |72.05%/90.63% (-0.1%/-0.02%)| 4.0 | - | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV2_quant_aware.tar) |
|ResNet50|-|76.50%/93.00%| 99 | 2.71 | [下载链接](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar) |
|ResNet50|quant_post|76.33%/93.02% (-0.17%/+0.02%)| 25.1| 1.19 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet50_quant_post.tar) |
|ResNet50|quant_aware| 76.48%/93.11% (-0.02%/+0.11%)| 25.1 | 1.17 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet50_quant_awre.tar) |
分类模型Lite时延(ms) |
armv7 |
armv8 |
设备 |
模型类型 |
压缩策略 |
Thread 1 |
Thread 2 |
Thread 4 |
Thread 1 |
Thread 2 |
Thread 4 |
高通835 |
MobileNetV1 |
FP32 baseline |
96.1942 |
53.2058 |
32.4468 |
88.4955 |
47.95 |
27.5189 |
quant_aware |
60.8186 |
32.1931 |
16.4275 |
56.4311 |
29.5446 |
15.1053 |
quant_post |
60.5615 |
32.4016 |
16.6596 |
56.5266 |
29.7178 |
15.1459 |
MobileNetV2 |
FP32 baseline |
65.715 |
38.1346 |
25.155 |
61.3593 |
36.2038 |
22.849 |
quant_aware |
48.3655 |
30.2021 |
21.9303 |
46.1487 |
27.3146 |
18.3053 |
quant_post |
48.3495 |
30.3069 |
22.1506 |
45.8715 |
27.4105 |
18.2223 |
ResNet50 |
FP32 baseline |
526.811 |
319.6486 |
205.8345 |
506.1138 |
335.1584 |
214.8936 |
quant_aware |
475.4538 |
256.8672 |
139.699 |
461.7344 |
247.9506 |
145.9847 |
quant_post |
476.0507 |
256.5963 |
139.7266 |
461.9176 |
248.3795 |
149.353 |
高通855 |
MobileNetV1 |
FP32 baseline |
33.5086 |
19.5773 |
11.7534 |
31.3474 |
18.5382 |
10.0811 |
quant_aware |
36.7067 |
21.628 |
11.0372 |
14.0238 |
8.199 |
4.2588 |
quant_post |
37.0498 |
21.7081 |
11.0779 |
14.0947 |
8.1926 |
4.2934 |
MobileNetV2 |
FP32 baseline |
25.0396 |
15.2862 |
9.6609 |
22.909 |
14.1797 |
8.8325 |
quant_aware |
28.1583 |
18.3317 |
11.8103 |
16.9158 |
11.1606 |
7.4148 |
quant_post |
28.1631 |
18.3917 |
11.8333 |
16.9399 |
11.1772 |
7.4176 |
ResNet50 |
FP32 baseline |
185.3705 |
113.0825 |
87.0741 |
177.7367 |
110.0433 |
74.4114 |
quant_aware |
327.6883 |
202.4536 |
106.243 |
243.5621 |
150.0542 |
78.4205 |
quant_post |
328.2683 |
201.9937 |
106.744 |
242.6397 |
150.0338 |
79.8659 |
麒麟970 |
MobileNetV1 |
FP32 baseline |
101.2455 |
56.4053 |
35.6484 |
94.8985 |
51.7251 |
31.9511 |
quant_aware |
62.5012 |
32.1863 |
16.6018 |
57.7477 |
29.2116 |
15.0703 |
quant_post |
62.4412 |
32.2585 |
16.6215 |
57.825 |
29.2573 |
15.1206 |
MobileNetV2 |
FP32 baseline |
70.4176 |
42.0795 |
25.1939 |
68.9597 |
39.2145 |
22.6617 |
quant_aware |
52.9961 |
31.5323 |
22.1447 |
49.4858 |
28.0856 |
18.7287 |
quant_post |
53.0961 |
31.7987 |
21.8334 |
49.383 |
28.2358 |
18.3642 |
ResNet50 |
FP32 baseline |
586.8943 |
344.0858 |
228.2293 |
573.3344 |
351.4332 |
225.8006 |
quant_aware |
488.361 |
260.1697 |
142.416 |
479.5668 |
249.8485 |
138.1742 |
quant_post |
489.6188 |
258.3279 |
142.6063 |
480.0064 |
249.5339 |
138.5284 |
|
|
|
|
|
|
|
|
|
### 1.2 剪裁
| 模型 | 压缩方法 | Top-1/Top-5 Acc | 模型体积(MB) | GFLOPs | 下载 |
|:--:|:---:|:--:|:--:|:--:|:--:|
| MobileNetV1 | Baseline | 70.99%/89.68% | 17 | 1.11 | [下载链接](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar) |
| MobileNetV1 | uniform -50% | 69.4%/88.66% (-1.59%/-1.02%) | 9 | 0.56 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_uniform-50.tar) |
| MobileNetV1 | sensitive -30% | 70.4%/89.3% (-0.59%/-0.38%) | 12 | 0.74 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_sensitive-30.tar) |
| MobileNetV1 | sensitive -50% | 69.8% / 88.9% (-1.19%/-0.78%) | 9 | 0.56 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_sensitive-50.tar) |
| MobileNetV2 | - | 72.15%/90.65% | 15 | 0.59 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) |
| MobileNetV2 | uniform -50% | 65.79%/86.11% (-6.35%/-4.47%) | 11 | 0.296 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV2_uniform-50.tar) |
| ResNet34 | - | 72.15%/90.65% | 84 | 7.36 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar) |
| ResNet34 | uniform -50% | 70.99%/89.95% (-1.36%/-0.87%) | 41 | 3.67 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet34_uniform-50.tar) |
| ResNet34 | auto -55.05% | 70.24%/89.63% (-2.04%/-1.06%) | 33 | 3.31 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet34_auto-55.tar) |
### 1.3 蒸馏
| 模型 | 压缩方法 | Top-1/Top-5 Acc | 模型体积(MB) | 下载 |
|:--:|:---:|:--:|:--:|:--:|
| MobileNetV1 | student | 70.99%/89.68% | 17 | [下载链接](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar) |
|ResNet50_vd|teacher|79.12%/94.44%| 99 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar) |
|MobileNetV1|ResNet50_vd[1](#trans1) distill|72.77%/90.68% (+1.78%/+1.00%)| 17 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_distilled.tar) |
| MobileNetV2 | student | 72.15%/90.65% | 15 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) |
| MobileNetV2 | ResNet50_vd distill | 74.28%/91.53% (+2.13%/+0.88%) | 15 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV2_distilled.tar) |
| ResNet50 | student | 76.50%/93.00% | 99 | [下载链接](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar) |
|ResNet101|teacher|77.56%/93.64%| 173 | [下载链接](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar) |
| ResNet50 | ResNet101 distill | 77.29%/93.65% (+0.79%/+0.65%) | 99 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet50_distilled.tar) |
!!! note "Note"
[1]:带_vd后缀代表该预训练模型使用了Mixup,Mixup相关介绍参考[mixup: Beyond Empirical Risk Minimization](https://arxiv.org/abs/1710.09412)
## 2. 目标检测
### 2.1 量化
数据集: COCO 2017
| 模型 | 压缩方法 | 数据集 | Image/GPU | 输入608 Box AP | 输入416 Box AP | 输入320 Box AP | 模型体积(MB) | TensorRT时延(V100, ms) | 下载 |
| :----------------------------: | :---------: | :----: | :-------: | :------------: | :------------: | :------------: | :------------: | :----------: |:----------: |
| MobileNet-V1-YOLOv3 | - | COCO | 8 | 29.3 | 29.3 | 27.1 | 95 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
| MobileNet-V1-YOLOv3 | quant_post | COCO | 8 | 27.9 (-1.4)| 28.0 (-1.3) | 26.0 (-1.0) | 25 | - | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_quant_post.tar) |
| MobileNet-V1-YOLOv3 | quant_aware | COCO | 8 | 28.1 (-1.2)| 28.2 (-1.1) | 25.8 (-1.2) | 26.3 | - | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenet_coco_quant_aware.tar) |
| R34-YOLOv3 | - | COCO | 8 | 36.2 | 34.3 | 31.4 | 162 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
| R34-YOLOv3 | quant_post | COCO | 8 | 35.7 (-0.5) | - | - | 42.7 | - | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r34_coco_quant_post.tar) |
| R34-YOLOv3 | quant_aware | COCO | 8 | 35.2 (-1.0) | 33.3 (-1.0) | 30.3 (-1.1)| 44 | - | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r34_coco_quant_aware.tar) |
| R50-dcn-YOLOv3 obj365_pretrain | - | COCO | 8 | 41.4 | - | - | 177 | 18.56 |[下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_pretrained_coco.tar) |
| R50-dcn-YOLOv3 obj365_pretrain | quant_aware | COCO | 8 | 40.6 (-0.8) | 37.5 | 34.1 | 66 | 14.64 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_quant_aware.tar) |
数据集:WIDER-FACE
| 模型 | 压缩方法 | Image/GPU | 输入尺寸 | Easy/Medium/Hard | 模型体积(MB) | 下载 |
| :------------: | :---------: | :-------: | :------: | :-----------------------------: | :------------: | :----------------------------------------------------------: |
| BlazeFace | - | 8 | 640 | 91.5/89.2/79.7 | 815 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_original.tar) |
| BlazeFace | quant_post | 8 | 640 | 87.8/85.1/74.9 (-3.7/-4.1/-4.8) | 228 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_origin_quant_post.tar) |
| BlazeFace | quant_aware | 8 | 640 | 90.5/87.9/77.6 (-1.0/-1.3/-2.1) | 228 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_origin_quant_aware.tar) |
| BlazeFace-Lite | - | 8 | 640 | 90.9/88.5/78.1 | 711 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_lite.tar) |
| BlazeFace-Lite | quant_post | 8 | 640 | 89.4/86.7/75.7 (-1.5/-1.8/-2.4) | 211 | [下载链接]((https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_lite_quant_post.tar)) |
| BlazeFace-Lite | quant_aware | 8 | 640 | 89.7/87.3/77.0 (-1.2/-1.2/-1.1) | 211 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_lite_quant_aware.tar) |
| BlazeFace-NAS | - | 8 | 640 | 83.7/80.7/65.8 | 244 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas.tar) |
| BlazeFace-NAS | quant_post | 8 | 640 | 81.6/78.3/63.6 (-2.1/-2.4/-2.2) | 71 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_nas_quant_post.tar) |
| BlazeFace-NAS | quant_aware | 8 | 640 | 83.1/79.7/64.2 (-0.6/-1.0/-1.6) | 71 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_nas_quant_aware.tar) |
### 2.2 剪裁
数据集:Pasacl VOC & COCO 2017
| 模型 | 压缩方法 | 数据集 | Image/GPU | 输入608 Box AP | 输入416 Box AP | 输入320 Box AP | 模型体积(MB) | GFLOPs (608*608) | 下载 |
| :----------------------------: | :---------------: | :--------: | :-------: | :------------: | :------------: | :------------: | :----------: | :--------------: | :----------------------------------------------------------: |
| MobileNet-V1-YOLOv3 | Baseline | Pascal VOC | 8 | 76.2 | 76.7 | 75.3 | 94 | 40.49 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
| MobileNet-V1-YOLOv3 | sensitive -52.88% | Pascal VOC | 8 | 77.6 (+1.4) | 77.7 (1.0) | 75.5 (+0.2) | 31 | 19.08 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenet_v1_voc_prune.tar) |
| MobileNet-V1-YOLOv3 | - | COCO | 8 | 29.3 | 29.3 | 27.0 | 95 | 41.35 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
| MobileNet-V1-YOLOv3 | sensitive -51.77% | COCO | 8 | 26.0 (-3.3) | 25.1 (-4.2) | 22.6 (-4.4) | 32 | 19.94 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenet_v1_prune.tar) |
| R50-dcn-YOLOv3 | - | COCO | 8 | 39.1 | - | - | 177 | 89.60 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn.tar) |
| R50-dcn-YOLOv3 | sensitive -9.37% | COCO | 8 | 39.3 (+0.2) | - | - | 150 | 81.20 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_prune.tar) |
| R50-dcn-YOLOv3 | sensitive -24.68% | COCO | 8 | 37.3 (-1.8) | - | - | 113 | 67.48 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_prune578.tar) |
| R50-dcn-YOLOv3 obj365_pretrain | - | COCO | 8 | 41.4 | - | - | 177 | 89.60 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_pretrained_coco.tar) |
| R50-dcn-YOLOv3 obj365_pretrain | sensitive -9.37% | COCO | 8 | 40.5 (-0.9) | - | - | 150 | 81.20 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_prune.tar) |
| R50-dcn-YOLOv3 obj365_pretrain | sensitive -24.68% | COCO | 8 | 37.8 (-3.3) | - | - | 113 | 67.48 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_prune578.tar) |
### 2.3 蒸馏
数据集:Pasacl VOC & COCO 2017
| 模型 | 压缩方法 | 数据集 | Image/GPU | 输入608 Box AP | 输入416 Box AP | 输入320 Box AP | 模型体积(MB) | 下载 |
| :-----------------: | :---------------------: | :--------: | :-------: | :------------: | :------------: | :------------: | :------------: | :----------------------------------------------------------: |
| MobileNet-V1-YOLOv3 | - | Pascal VOC | 8 | 76.2 | 76.7 | 75.3 | 94 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
| ResNet34-YOLOv3 | - | Pascal VOC | 8 | 82.6 | 81.9 | 80.1 | 162 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) |
| MobileNet-V1-YOLOv3 | ResNet34-YOLOv3 distill | Pascal VOC | 8 | 79.0 (+2.8) | 78.2 (+1.5) | 75.5 (+0.2) | 94 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_voc_distilled.tar) |
| MobileNet-V1-YOLOv3 | - | COCO | 8 | 29.3 | 29.3 | 27.0 | 95 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
| ResNet34-YOLOv3 | - | COCO | 8 | 36.2 | 34.3 | 31.4 | 163 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
| MobileNet-V1-YOLOv3 | ResNet34-YOLOv3 distill | COCO | 8 | 31.4 (+2.1) | 30.0 (+0.7) | 27.1 (+0.1) | 95 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_distilled.tar) |
## 3. 图像分割
数据集:Cityscapes
### 3.1 量化
| 模型 | 压缩方法 | mIoU | 模型体积(MB) | 下载 |
| :--------------------: | :---------: | :-----------: | :------------: | :----------------------------------------------------------: |
| DeepLabv3+/MobileNetv1 | - | 63.26 | 6.6 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv1.tar ) |
| DeepLabv3+/MobileNetv1 | quant_post | 58.63 (-4.63) | 1.8 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv1_2049x1025_quant_post.tar) |
| DeepLabv3+/MobileNetv1 | quant_aware | 62.03 (-1.23) | 1.8 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv1_2049x1025_quant_aware.tar) |
| DeepLabv3+/MobileNetv2 | - | 69.81 | 7.4 | [下载链接](https://paddleseg.bj.bcebos.com/models/mobilenet_cityscapes.tgz) |
| DeepLabv3+/MobileNetv2 | quant_post | 67.59 (-2.22) | 2.1 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv2_2049x1025_quant_post.tar) |
| DeepLabv3+/MobileNetv2 | quant_aware | 68.33 (-1.48) | 2.1 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv2_2049x1025_quant_aware.tar) |
图像分割模型Lite时延(ms),
输入尺寸769x769 |
armv7 |
armv8 |
设备 |
模型类型 |
压缩策略 |
Thread 1 |
Thread 2 |
Thread 4 |
Thread 1 |
Thread 2 |
Thread 4 |
高通835 |
Deeplabv3- MobileNetV1 |
FP32 baseline |
1227.9894 |
734.1922 |
527.9592 |
1109.96 |
699.3818 |
479.0818 |
quant_aware |
848.6544 |
512.785 |
382.9915 |
752.3573 |
455.0901 |
307.8808 |
quant_post |
840.2323 |
510.103 |
371.9315 |
748.9401 |
452.1745 |
309.2084 |
Deeplabv3-MobileNetV2 |
FP32 baseline |
1282.8126 |
793.2064 |
653.6538 |
1193.9908 |
737.1827 |
593.4522 |
quant_aware |
976.0495 |
659.0541 |
513.4279 |
892.1468 |
582.9847 |
484.7512 |
quant_post |
981.44 |
658.4969 |
538.6166 |
885.3273 |
586.1284 |
484.0018 |
高通855 |
Deeplabv3-MobileNetV1 |
FP32 baseline |
568.8748 |
339.8578 |
278.6316 |
420.6031 |
281.3197 |
217.5222 |
quant_aware |
608.7578 |
347.2087 |
260.653 |
241.2394 |
177.3456 |
143.9178 |
quant_post |
609.0142 |
347.3784 |
259.9825 |
239.4103 |
180.1894 |
139.9178 |
Deeplabv3-MobileNetV2 |
FP32 baseline |
639.4425 |
390.1851 |
322.7014 |
477.7667 |
339.7411 |
262.2847 |
quant_aware |
703.7275 |
497.689 |
417.1296 |
394.3586 |
300.2503 |
239.9204 |
quant_post |
705.7589 |
474.4076 |
427.2951 |
394.8352 |
297.4035 |
264.6724 |
麒麟970 |
Deeplabv3-MobileNetV1 |
FP32 baseline |
1682.1792 |
1437.9774 |
1181.0246 |
1261.6739 |
1068.6537 |
690.8225 |
quant_aware |
1062.3394 |
1248.1014 |
878.3157 |
774.6356 |
710.6277 |
528.5376 |
quant_post |
1109.1917 |
1339.6218 |
866.3587 |
771.5164 |
716.5255 |
500.6497 |
Deeplabv3-MobileNetV2 |
FP32 baseline |
1771.1301 |
1746.0569 |
1222.4805 |
1448.9739 |
1192.4491 |
760.606 |
quant_aware |
1320.2905 |
921.4522 |
676.0732 |
1145.8801 |
821.5685 |
590.1713 |
quant_post |
1320.386 |
918.5328 |
672.2481 |
1020.753 |
820.094 |
591.4114 |
|
|
|
|
|
|
|
|
|
### 3.2 剪裁
| 模型 | 压缩方法 | mIoU | 模型体积(MB) | GFLOPs | 下载 |
| :-------: | :---------------: | :-----------: | :------------: | :----: | :----------------------------------------------------------: |
| fast-scnn | baseline | 69.64 | 11 | 14.41 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/fast_scnn_cityscape.tar) |
| fast-scnn | uniform -17.07% | 69.58 (-0.06) | 8.5 | 11.95 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/fast_scnn_cityscape_uniform-17.tar) |
| fast-scnn | sensitive -47.60% | 66.68 (-2.96) | 5.7 | 7.55 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/fast_scnn_cityscape_sensitive-47.tar) |