reader.py 9.6 KB
Newer Older
B
Bai Yifan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from PIL import Image
from PIL import ImageOps
import os
import math
import random
import tarfile
import functools
import numpy as np
from PIL import Image, ImageEnhance
import paddle
# for python2/python3 compatiablity
try:
    import cPickle
except:
    import _pickle as cPickle

IMAGE_SIZE = 32
IMAGE_DEPTH = 3
CIFAR_MEAN = [0.49139968, 0.48215827, 0.44653124]
CIFAR_STD = [0.24703233, 0.24348505, 0.26158768]

URL_PREFIX = 'https://www.cs.toronto.edu/~kriz/'
CIFAR10_URL = URL_PREFIX + 'cifar-10-python.tar.gz'
CIFAR10_MD5 = 'c58f30108f718f92721af3b95e74349a'

paddle.dataset.common.DATA_HOME = "dataset/"

THREAD = 16
BUF_SIZE = 10240

IMAGENET_MEAN = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
IMAGENET_STD = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
IMAGENET_DIM = 224


def preprocess(sample, is_training, args):
    image_array = sample.reshape(IMAGE_DEPTH, IMAGE_SIZE, IMAGE_SIZE)
    rgb_array = np.transpose(image_array, (1, 2, 0))
    img = Image.fromarray(rgb_array, 'RGB')

    if is_training:
        # pad, ramdom crop, random_flip_left_right
        img = ImageOps.expand(img, (4, 4, 4, 4), fill=0)
        left_top = np.random.randint(8, size=2)
        img = img.crop((left_top[1], left_top[0], left_top[1] + IMAGE_SIZE,
                        left_top[0] + IMAGE_SIZE))
        if np.random.randint(2):
            img = img.transpose(Image.FLIP_LEFT_RIGHT)
    img = np.array(img).astype(np.float32)

    img_float = img / 255.0
    img = (img_float - CIFAR_MEAN) / CIFAR_STD

    if is_training and args.cutout:
        center = np.random.randint(IMAGE_SIZE, size=2)
        offset_width = max(0, center[0] - args.cutout_length // 2)
        offset_height = max(0, center[1] - args.cutout_length // 2)
        target_width = min(center[0] + args.cutout_length // 2, IMAGE_SIZE)
        target_height = min(center[1] + args.cutout_length // 2, IMAGE_SIZE)

        for i in range(offset_height, target_height):
            for j in range(offset_width, target_width):
                img[i][j][:] = 0.0

    img = np.transpose(img, (2, 0, 1))
    return img


def reader_generator(datasets, batch_size, is_training, is_shuffle, args):
    def read_batch(datasets, args):
        if is_shuffle:
            random.shuffle(datasets)
        for im, label in datasets:
            im = preprocess(im, is_training, args)
            yield im, [int(label)]

    def reader():
        batch_data = []
        batch_label = []
        for data in read_batch(datasets, args):
            batch_data.append(data[0])
            batch_label.append(data[1])
            if len(batch_data) == batch_size:
                batch_data = np.array(batch_data, dtype='float32')
                batch_label = np.array(batch_label, dtype='int64')
                batch_out = [batch_data, batch_label]
                yield batch_out
                batch_data = []
                batch_label = []

    return reader


def cifar10_reader(file_name, data_name, is_shuffle, args):
    with tarfile.open(file_name, mode='r') as f:
        names = [
            each_item.name for each_item in f if data_name in each_item.name
        ]
        names.sort()
        datasets = []
        for name in names:
            print("Reading file " + name)
            try:
                batch = cPickle.load(
                    f.extractfile(name), encoding='iso-8859-1')
            except:
                batch = cPickle.load(f.extractfile(name))
            data = batch['data']
            labels = batch.get('labels', batch.get('fine_labels', None))
            assert labels is not None
            dataset = zip(data, labels)
            datasets.extend(dataset)
        if is_shuffle:
            random.shuffle(datasets)
    return datasets


def train_search(batch_size, train_portion, is_shuffle, args):
    datasets = cifar10_reader(
        paddle.dataset.common.download(CIFAR10_URL, 'cifar', CIFAR10_MD5),
        'data_batch', is_shuffle, args)
    split_point = int(np.floor(train_portion * len(datasets)))
    train_datasets = datasets[:split_point]
    val_datasets = datasets[split_point:]
B
Bai Yifan 已提交
143 144 145
    reader = [
        reader_generator(train_datasets, batch_size, True, True, args),
        reader_generator(val_datasets, batch_size, True, True, args)
B
Bai Yifan 已提交
146 147 148 149 150 151 152 153 154
    ]
    return reader


def train_valid(batch_size, is_train, is_shuffle, args):
    name = 'data_batch' if is_train else 'test_batch'
    datasets = cifar10_reader(
        paddle.dataset.common.download(CIFAR10_URL, 'cifar', CIFAR10_MD5),
        name, is_shuffle, args)
B
Bai Yifan 已提交
155 156

    reader = reader_generator(datasets, batch_size, is_train, is_shuffle, args)
B
Bai Yifan 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
    return reader


def crop_image(img, target_size, center):
    width, height = img.size
    size = target_size
    if center == True:
        w_start = (width - size) / 2
        h_start = (height - size) / 2
    else:
        w_start = np.random.randint(0, width - size + 1)
        h_start = np.random.randint(0, height - size + 1)
    w_end = w_start + size
    h_end = h_start + size
    img = img.crop((w_start, h_start, w_end, h_end))
    return img


def resize_short(img, target_size):
    percent = float(target_size) / min(img.size[0], img.size[1])
    resized_width = int(round(img.size[0] * percent))
    resized_height = int(round(img.size[1] * percent))
    img = img.resize((resized_width, resized_height), Image.LANCZOS)
    return img


def random_crop(img, size, scale=[0.08, 1.0], ratio=[3. / 4., 4. / 3.]):
    aspect_ratio = math.sqrt(np.random.uniform(*ratio))
    w = 1. * aspect_ratio
    h = 1. / aspect_ratio

    bound = min((float(img.size[0]) / img.size[1]) / (w**2),
                (float(img.size[1]) / img.size[0]) / (h**2))
    scale_max = min(scale[1], bound)
    scale_min = min(scale[0], bound)

    target_area = img.size[0] * img.size[1] * np.random.uniform(scale_min,
                                                                scale_max)
    target_size = math.sqrt(target_area)
    w = int(target_size * w)
    h = int(target_size * h)

    i = np.random.randint(0, img.size[0] - w + 1)
    j = np.random.randint(0, img.size[1] - h + 1)

    img = img.crop((i, j, i + w, j + h))
    img = img.resize((size, size), Image.BILINEAR)
    return img


def distort_color(img):
    def random_brightness(img, lower=0.5, upper=1.5):
        e = np.random.uniform(lower, upper)
        return ImageEnhance.Brightness(img).enhance(e)

    def random_contrast(img, lower=0.5, upper=1.5):
        e = np.random.uniform(lower, upper)
        return ImageEnhance.Contrast(img).enhance(e)

    def random_color(img, lower=0.5, upper=1.5):
        e = np.random.uniform(lower, upper)
        return ImageEnhance.Color(img).enhance(e)

    ops = [random_brightness, random_contrast, random_color]
    np.random.shuffle(ops)

    img = ops[0](img)
    img = ops[1](img)
    img = ops[2](img)

    return img


def process_image(sample, mode, color_jitter, rotate):
    img_path = sample[0]

    img = Image.open(img_path)
    if mode == 'train':
        img = random_crop(img, IMAGENET_DIM)
        if np.random.randint(0, 2) == 1:
            img = img.transpose(Image.FLIP_LEFT_RIGHT)
        if color_jitter:
            img = distort_color(img)

    else:
        img = resize_short(img, target_size=256)
        img = crop_image(img, target_size=IMAGENET_DIM, center=True)

    if img.mode != 'RGB':
        img = img.convert('RGB')

    img = np.array(img).astype('float32').transpose((2, 0, 1)) / 255
    img -= IMAGENET_MEAN
    img /= IMAGENET_STD

    if mode == 'train' or mode == 'val':
        return img, np.array([sample[1]], dtype='int64')
    elif mode == 'test':
        return [img]


def _reader_creator(file_list,
                    mode,
                    shuffle=False,
                    color_jitter=False,
                    rotate=False,
                    data_dir=None):
    def reader():
        try:
            with open(file_list) as flist:
                full_lines = [line.strip() for line in flist]
                if shuffle:
                    np.random.shuffle(full_lines)
                lines = full_lines
                for line in lines:
                    if mode == 'train' or mode == 'val':
                        img_path, label = line.split()
                        img_path = os.path.join(data_dir, img_path)
                        yield img_path, int(label)
                    elif mode == 'test':
                        img_path = os.path.join(data_dir, line)
                        yield [img_path]
        except Exception as e:
            print("Reader failed!\n{}".format(str(e)))
            os._exit(1)

    mapper = functools.partial(
        process_image, mode=mode, color_jitter=color_jitter, rotate=rotate)
    return paddle.reader.xmap_readers(mapper, reader, THREAD, BUF_SIZE)


def imagenet_reader(data_dir, mode):
    if mode is 'train':
        shuffle = True
        suffix = 'train_list.txt'
    elif mode is 'val':
        shuffle = False
        suffix = 'val_list.txt'
    file_list = os.path.join(data_dir, suffix)
    return _reader_creator(file_list, mode, shuffle=shuffle, data_dir=data_dir)