pruner.py 9.2 KB
Newer Older
W
wanghaoshuang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import logging
16
import sys
Y
yukavio 已提交
17
import copy
W
wanghaoshuang 已提交
18
import numpy as np
19
from functools import reduce
20
from ..core import VarWrapper, OpWrapper, GraphWrapper
21 22 23
from .group_param import collect_convs
from .criterion import CRITERION
from .idx_selector import IDX_SELECTOR
24
from ..common import get_logger
W
wanghaoshuang 已提交
25

26
__all__ = ["Pruner"]
W
wanghaoshuang 已提交
27

28 29
_logger = get_logger(__name__, level=logging.INFO)

W
wanghaoshuang 已提交
30 31

class Pruner():
32 33 34
    """The pruner used to prune channels of convolution.

    Args:
35 36
        criterion(str|function): the criterion used to sort channels for pruning.
        idx_selector(str|function): 
37 38 39

    """

Y
yukavio 已提交
40
    def __init__(self, criterion="l1_norm",
41 42 43 44 45 46 47 48 49 50 51
                 idx_selector="default_idx_selector"):
        if isinstance(criterion, str):
            self.criterion = CRITERION.get(criterion)
        else:
            self.criterion = criterion
        if isinstance(idx_selector, str):
            self.idx_selector = IDX_SELECTOR.get(idx_selector)
        else:
            self.idx_selector = idx_selector

        self.pruned_weights = False
W
wanghaoshuang 已提交
52 53 54 55 56 57 58 59 60

    def prune(self,
              program,
              scope,
              params,
              ratios,
              place=None,
              lazy=False,
              only_graph=False,
W
wanghaoshuang 已提交
61 62
              param_backup=False,
              param_shape_backup=False):
63 64
        """Pruning the given parameters.

W
wanghaoshuang 已提交
65
        Args:
66

Y
yukavio 已提交
67
            program(paddle.static.Program): The program to be pruned.
68
            scope(paddle.static.Scope): The scope storing paramaters to be pruned.
W
wanghaoshuang 已提交
69 70
            params(list<str>): A list of parameter names to be pruned.
            ratios(list<float>): A list of ratios to be used to pruning parameters.
71
            place(paddle.CUDAPlace||paddle.CPUPlace): The device place of filter parameters. Defalut: None.
W
wanghaoshuang 已提交
72 73 74 75
            lazy(bool): True means setting the pruned elements to zero.
                        False means cutting down the pruned elements. Default: False.
            only_graph(bool): True means only modifying the graph.
                              False means modifying graph and variables in scope. Default: False.
W
wanghaoshuang 已提交
76 77
            param_backup(bool): Whether to return a dict to backup the values of parameters. Default: False.
            param_shape_backup(bool): Whether to return a dict to backup the shapes of parameters. Default: False.
78

W
wanghaoshuang 已提交
79
        Returns:
80
            tuple: ``(pruned_program, param_backup, param_shape_backup)``. ``pruned_program`` is the pruned program. ``param_backup`` is a dict to backup the values of parameters. ``param_shape_backup`` is a dict to backup the shapes of parameters.
W
wanghaoshuang 已提交
81 82 83 84
        """

        self.pruned_list = []
        graph = GraphWrapper(program.clone())
W
wanghaoshuang 已提交
85 86
        param_backup = {} if param_backup else None
        param_shape_backup = {} if param_shape_backup else None
W
wanghaoshuang 已提交
87

W
whs 已提交
88
        pruned_params = []
W
whs 已提交
89
        visited = {}
W
wanghaoshuang 已提交
90
        for param, ratio in zip(params, ratios):
W
whs 已提交
91
            _logger.info("pruning: {}".format(param))
W
whs 已提交
92 93
            if graph.var(param) is None:
                _logger.warn(
Y
yukavio 已提交
94 95
                    "Variable[{}] to be pruned is not in current graph.".format(
                        param))
W
whs 已提交
96
                continue
W
whs 已提交
97 98
            group = collect_convs([param], graph,
                                  visited)[0]  # [(name, axis, pruned_idx)]
W
whs 已提交
99 100
            if group is None or len(group) == 0:
                continue
101 102
            assert (
                not self.pruned_weights), "The weights have been pruned once."
W
whs 已提交
103 104 105 106 107 108 109 110 111 112 113
            group_values = []
            for name, axis, pruned_idx in group:
                var = scope.find_var(name)
                if var is not None:
                    values = np.array(var.get_tensor())
                    group_values.append((name, values, axis, pruned_idx))

            scores = self.criterion(group_values,
                                    graph)  # [(name, axis, score, pruned_idx)]
            g = self._transform(self.idx_selector(scores, ratio))
            pruned_params.extend(g)
W
whs 已提交
114 115 116

        merge_pruned_params = {}
        for param, pruned_axis, pruned_idx in pruned_params:
117 118 119 120 121
            if param not in merge_pruned_params:
                merge_pruned_params[param] = {}
            if pruned_axis not in merge_pruned_params[param]:
                merge_pruned_params[param][pruned_axis] = []
            merge_pruned_params[param][pruned_axis].append(pruned_idx)
W
whs 已提交
122 123
        for param_name in merge_pruned_params:
            for pruned_axis in merge_pruned_params[param_name]:
W
whs 已提交
124 125
                pruned_idx = np.concatenate(merge_pruned_params[param_name][
                    pruned_axis])
W
whs 已提交
126
                param = graph.var(param_name)
W
whs 已提交
127
                if not lazy:
128 129 130
                    _logger.debug("{}\t{}\t{}\t{}".format(
                        param.name(), pruned_axis,
                        param.shape()[pruned_axis], len(pruned_idx)))
W
whs 已提交
131
                    origin_shape = copy.deepcopy(param.shape())
W
whs 已提交
132 133 134 135 136
                    if param_shape_backup is not None:
                        param_shape_backup[param.name()] = origin_shape
                    new_shape = list(param.shape())
                    new_shape[pruned_axis] -= len(pruned_idx)
                    param.set_shape(new_shape)
W
whs 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150
                    # update groups of depthwise conv2d
                    for op in param.outputs():
                        if op.type() in ["conv2d", "depthwise_conv2d"
                                         ] and op.attr("groups") > 1:
                            assert origin_shape[
                                1] == 1, "Only support for depthwise when groups > 1."
                            new_groups = int(
                                op.attr("groups") * new_shape[pruned_axis] /
                                origin_shape[pruned_axis])
                            _logger.debug(
                                f"change groups of conv({param.name()}) from {op.attr('groups')} to {new_groups}; origin_shape: {origin_shape}; new_shape: {new_shape}"
                            )
                            op.set_attr("groups", new_groups)

W
whs 已提交
151 152
                if not only_graph:
                    param_t = scope.find_var(param.name()).get_tensor()
W
whs 已提交
153 154 155 156
                    if param_backup is not None and (
                            param.name() not in param_backup):
                        param_backup[param.name()] = copy.deepcopy(
                            np.array(param_t))
W
whs 已提交
157 158 159 160 161 162
                    try:
                        pruned_param = self._prune_tensor(
                            np.array(param_t),
                            pruned_idx,
                            pruned_axis=pruned_axis,
                            lazy=lazy)
W
whs 已提交
163
                        param_t.set(pruned_param, place)
W
whs 已提交
164
                    except IndexError as e:
W
whs 已提交
165 166 167
                        _logger.error("Pruning {}, but get [{}]".format(
                            param.name(), e))

168
        graph.infer_shape()
169
        self.pruned_weights = (not only_graph)
W
whs 已提交
170
        return graph.program, param_backup, param_shape_backup
W
wanghaoshuang 已提交
171

W
whs 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
    def _transform(self, group):
        ret = []
        for name, axis, pruned_idx, transforms in group:
            src = pruned_idx
            for trans in transforms:
                src_start = trans['src_start']
                src_end = trans['src_end']
                target_start = trans['target_start']
                target_end = trans['target_end']
                target = []
                for idx in src:
                    if idx >= src_start and idx < src_end:
                        idx -= src_start
                        idx += target_start
                        if idx < target_end:
                            target.append(idx)
                src = target
            ret.append((name, axis, src))
        return ret

W
wanghaoshuang 已提交
192 193 194
    def _prune_tensor(self, tensor, pruned_idx, pruned_axis, lazy=False):
        """
        Pruning a array by indexes on given axis.
195

W
wanghaoshuang 已提交
196 197 198 199 200 201 202
        Args:
            tensor(numpy.array): The target array to be pruned.
            pruned_idx(list<int>): The indexes to be pruned.
            pruned_axis(int): The axis of given array to be pruned on. 
            lazy(bool): True means setting the pruned elements to zero.
                        False means remove the pruned elements from memory.
                        default: False.
203

W
wanghaoshuang 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
        Returns:
            numpy.array: The pruned array.
        """
        mask = np.zeros(tensor.shape[pruned_axis], dtype=bool)
        mask[pruned_idx] = True

        def func(data):
            return data[~mask]

        def lazy_func(data):
            data[mask] = 0
            return data

        if lazy:
            return np.apply_along_axis(lazy_func, pruned_axis, tensor)
        else:
            return np.apply_along_axis(func, pruned_axis, tensor)