未验证 提交 6a359a7a 编写于 作者: L lijianshe02 提交者: GitHub

add FPGM pruning algorithm's implementation test=develop (#172)

上级 b45a4b66
......@@ -156,8 +156,7 @@ def _reader_creator(file_list,
for line in lines:
if mode == 'train' or mode == 'val':
img_path, label = line.split()
img_path = os.path.join(
os.path.join(data_dir, mode), img_path)
img_path = os.path.join(data_dir, img_path)
yield img_path, int(label)
elif mode == 'test':
img_path = os.path.join(data_dir, line)
......
......@@ -15,6 +15,7 @@
import logging
import sys
import numpy as np
from functools import reduce
import paddle.fluid as fluid
import copy
from ..core import VarWrapper, OpWrapper, GraphWrapper
......@@ -152,6 +153,27 @@ class Pruner():
reduce_dims = [i for i in range(len(param_t.shape)) if i != axis]
criterions = np.sum(np.abs(param_t), axis=tuple(reduce_dims))
pruned_idx = criterions.argsort()[:prune_num]
elif self.criterion == 'geometry_median':
param_t = np.array(scope.find_var(param).get_tensor())
prune_num = int(round(param_t.shape[axis] * ratio))
def get_distance_sum(param, out_idx):
w = param.view()
reduce_dims = reduce(lambda x, y: x * y, param.shape[1:])
w.shape = param.shape[0], reduce_dims
selected_filter = np.tile(w[out_idx], (w.shape[0], 1))
x = w - selected_filter
x = np.sqrt(np.sum(x * x, -1))
return x.sum()
dist_sum_list = []
for out_i in range(param_t.shape[0]):
dist_sum = get_distance_sum(param_t, out_i)
dist_sum_list.append((dist_sum, out_i))
min_gm_filters = sorted(
dist_sum_list, key=lambda x: x[0])[:prune_num]
pruned_idx = [x[1] for x in min_gm_filters]
elif self.criterion == "batch_norm_scale":
param_var = graph.var(param)
conv_op = param_var.outputs()[0]
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
sys.path.append("../")
import unittest
import paddle.fluid as fluid
from paddleslim.prune import Pruner
from layers import conv_bn_layer
class TestPrune(unittest.TestCase):
def test_prune(self):
main_program = fluid.Program()
startup_program = fluid.Program()
# X X O X O
# conv1-->conv2-->sum1-->conv3-->conv4-->sum2-->conv5-->conv6
# | ^ | ^
# |____________| |____________________|
#
# X: prune output channels
# O: prune input channels
with fluid.program_guard(main_program, startup_program):
input = fluid.data(name="image", shape=[None, 3, 16, 16])
conv1 = conv_bn_layer(input, 8, 3, "conv1")
conv2 = conv_bn_layer(conv1, 8, 3, "conv2")
sum1 = conv1 + conv2
conv3 = conv_bn_layer(sum1, 8, 3, "conv3")
conv4 = conv_bn_layer(conv3, 8, 3, "conv4")
sum2 = conv4 + sum1
conv5 = conv_bn_layer(sum2, 8, 3, "conv5")
conv6 = conv_bn_layer(conv5, 8, 3, "conv6")
shapes = {}
for param in main_program.global_block().all_parameters():
shapes[param.name] = param.shape
place = fluid.CPUPlace()
exe = fluid.Executor(place)
scope = fluid.Scope()
exe.run(startup_program, scope=scope)
criterion = 'geometry_median'
pruner = Pruner(criterion)
main_program, _, _ = pruner.prune(
main_program,
scope,
params=["conv4_weights"],
ratios=[0.5],
place=place,
lazy=False,
only_graph=False,
param_backup=None,
param_shape_backup=None)
shapes = {
"conv1_weights": (4L, 3L, 3L, 3L),
"conv2_weights": (4L, 4L, 3L, 3L),
"conv3_weights": (8L, 4L, 3L, 3L),
"conv4_weights": (4L, 8L, 3L, 3L),
"conv5_weights": (8L, 4L, 3L, 3L),
"conv6_weights": (8L, 8L, 3L, 3L)
}
for param in main_program.global_block().all_parameters():
if "weights" in param.name:
print("param: {}; param shape: {}".format(param.name,
param.shape))
self.assertTrue(param.shape == shapes[param.name])
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册