mobilenet_block.py 16.4 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from .search_space_base import SearchSpaceBase
from .base_layer import conv_bn_layer
from .search_space_registry import SEARCHSPACE
25
from .utils import compute_downsample_num, check_points, get_random_tokens
C
ceci3 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

__all__ = ["MobileNetV1BlockSpace", "MobileNetV2BlockSpace"]


@SEARCHSPACE.register
class MobileNetV2BlockSpace(SearchSpaceBase):
    def __init__(self,
                 input_size,
                 output_size,
                 block_num,
                 block_mask=None,
                 scale=1.0):
        super(MobileNetV2BlockSpace, self).__init__(input_size, output_size,
                                                    block_num, block_mask)

C
ceci3 已提交
41 42
        if self.block_mask == None:
            # use input_size and output_size to compute self.downsample_num
C
update  
ceci3 已提交
43 44
            self.downsample_num = compute_downsample_num(self.input_size,
                                                         self.output_size)
C
ceci3 已提交
45
        if self.block_num != None:
C
update  
ceci3 已提交
46 47
            assert self.downsample_num <= self.block_num, 'downsample numeber must be LESS THAN OR EQUAL TO block_num, but NOW: downsample numeber is {}, block_num is {}'.format(
                self.downsample_num, self.block_num)
C
ceci3 已提交
48 49

        # self.filter_num means channel number
C
update  
ceci3 已提交
50 51 52 53
        self.filter_num = np.array([
            3, 4, 8, 12, 16, 24, 32, 48, 64, 80, 96, 128, 144, 160, 192, 224,
            256, 320, 384, 512
        ])  # 20
C
ceci3 已提交
54 55 56 57 58 59 60 61 62
        # self.k_size means kernel size
        self.k_size = np.array([3, 5])  #2
        # self.multiply means expansion_factor of each _inverted_residual_unit
        self.multiply = np.array([1, 2, 3, 4, 5, 6])  #6
        # self.repeat means repeat_num _inverted_residual_unit in each _invresi_blocks
        self.repeat = np.array([1, 2, 3, 4, 5, 6])  #6
        self.scale = scale

    def init_tokens(self):
C
ceci3 已提交
63
        return get_random_tokens(self.range_table())
C
ceci3 已提交
64 65 66 67

    def range_table(self):
        range_table_base = []
        if self.block_mask != None:
C
update  
ceci3 已提交
68
            range_table_length = len(self.block_mask)
C
ceci3 已提交
69
        else:
C
ceci3 已提交
70
            range_table_length = self.block_num
C
update  
ceci3 已提交
71 72 73 74 75 76 77

        for i in range(range_table_length):
            range_table_base.append(len(self.multiply))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.repeat))
            range_table_base.append(len(self.k_size))

C
ceci3 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
        return range_table_base

    def token2arch(self, tokens=None):
        """
        return mobilenetv2 net_arch function
        """

        if tokens == None:
            tokens = self.init_tokens()

        self.bottleneck_params_list = []
        if self.block_mask != None:
            for i in range(len(self.block_mask)):
                self.bottleneck_params_list.append(
                    (self.multiply[tokens[i * 4]],
                     self.filter_num[tokens[i * 4 + 1]],
                     self.repeat[tokens[i * 4 + 2]], 2
                     if self.block_mask[i] == 1 else 1,
                     self.k_size[tokens[i * 4 + 3]]))
        else:
C
ceci3 已提交
98
            repeat_num = int(self.block_num / self.downsample_num)
C
ceci3 已提交
99 100 101
            num_minus = self.block_num % self.downsample_num
            ### if block_num > downsample_num, add stride=1 block at last (block_num-downsample_num) layers
            for i in range(self.downsample_num):
C
update  
ceci3 已提交
102 103 104 105 106
                self.bottleneck_params_list.append(
                    (self.multiply[tokens[i * 4]],
                     self.filter_num[tokens[i * 4 + 1]],
                     self.repeat[tokens[i * 4 + 2]], 2,
                     self.k_size[tokens[i * 4 + 3]]))
C
ceci3 已提交
107 108 109 110

                ### if block_num / downsample_num > 1, add (block_num / downsample_num) times stride=1 block 
                for k in range(repeat_num - 1):
                    kk = k * self.downsample_num + i
C
update  
ceci3 已提交
111 112 113 114 115 116
                    self.bottleneck_params_list.append(
                        (self.multiply[tokens[kk * 4]],
                         self.filter_num[tokens[kk * 4 + 1]],
                         self.repeat[tokens[kk * 4 + 2]], 1,
                         self.k_size[tokens[kk * 4 + 3]]))

C
ceci3 已提交
117
                if self.downsample_num - i <= num_minus:
C
ceci3 已提交
118
                    j = self.downsample_num * (repeat_num - 1) + i
C
update  
ceci3 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131
                    self.bottleneck_params_list.append(
                        (self.multiply[tokens[j * 4]],
                         self.filter_num[tokens[j * 4 + 1]],
                         self.repeat[tokens[j * 4 + 2]], 1,
                         self.k_size[tokens[j * 4 + 3]]))

            if self.downsample_num == 0 and self.block_num != 0:
                for i in range(len(self.block_num)):
                    self.bottleneck_params_list.append(
                        (self.multiply[tokens[i * 4]],
                         self.filter_num[tokens[i * 4 + 1]],
                         self.repeat[tokens[i * 4 + 2]], 1,
                         self.k_size[tokens[i * 4 + 3]]))
C
ceci3 已提交
132

C
update  
ceci3 已提交
133
        def net_arch(input, return_mid_layer=False, return_block=None):
C
ceci3 已提交
134 135 136
            # all padding is 'SAME' in the conv2d, can compute the actual padding automatic. 
            # bottleneck sequences
            in_c = int(32 * self.scale)
C
ceci3 已提交
137 138 139 140
            mid_layer = dict()
            layer_count = 0
            depthwise_conv = None

C
ceci3 已提交
141 142
            for i, layer_setting in enumerate(self.bottleneck_params_list):
                t, c, n, s, k = layer_setting
C
ceci3 已提交
143 144 145

                if s == 2:
                    layer_count += 1
C
update  
ceci3 已提交
146
                if check_points((layer_count - 1), return_block):
C
update  
ceci3 已提交
147
                    mid_layer[layer_count - 1] = depthwise_conv
C
ceci3 已提交
148

C
ceci3 已提交
149 150 151 152 153 154 155
                input, depthwise_conv = self._invresi_blocks(
                    input=input,
                    in_c=in_c,
                    t=t,
                    c=int(c * self.scale),
                    n=n,
                    s=s,
C
ceci3 已提交
156
                    k=int(k),
C
update  
ceci3 已提交
157
                    name='mobilenetv2_' + str(i + 1))
C
ceci3 已提交
158 159
                in_c = int(c * self.scale)

C
update  
ceci3 已提交
160
            if check_points(layer_count, return_block):
C
update  
ceci3 已提交
161 162
                mid_layer[layer_count] = depthwise_conv

C
ceci3 已提交
163
            if return_mid_layer:
C
ceci3 已提交
164
                return input, mid_layer
C
ceci3 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
            else:
                return input,

        return net_arch

    def _shortcut(self, input, data_residual):
        """Build shortcut layer.
        Args:
            input(Variable): input.
            data_residual(Variable): residual layer.
        Returns:
            Variable, layer output.
        """
        return fluid.layers.elementwise_add(input, data_residual)

    def _inverted_residual_unit(self,
                                input,
                                num_in_filter,
                                num_filters,
                                ifshortcut,
                                stride,
                                filter_size,
                                expansion_factor,
                                reduction_ratio=4,
                                name=None):
        """Build inverted residual unit.
        Args:
            input(Variable), input.
            num_in_filter(int), number of in filters.
            num_filters(int), number of filters.
            ifshortcut(bool), whether using shortcut.
            stride(int), stride.
            filter_size(int), filter size.
            padding(str|int|list), padding.
            expansion_factor(float), expansion factor.
            name(str), name.
        Returns:
            Variable, layers output.
        """
        num_expfilter = int(round(num_in_filter * expansion_factor))
        channel_expand = conv_bn_layer(
            input=input,
            num_filters=num_expfilter,
            filter_size=1,
            stride=1,
            padding='SAME',
            num_groups=1,
            act='relu6',
            name=name + '_expand')

        bottleneck_conv = conv_bn_layer(
            input=channel_expand,
            num_filters=num_expfilter,
            filter_size=filter_size,
            stride=stride,
            padding='SAME',
            num_groups=num_expfilter,
            act='relu6',
            name=name + '_dwise',
            use_cudnn=False)

        depthwise_output = bottleneck_conv

        linear_out = conv_bn_layer(
            input=bottleneck_conv,
            num_filters=num_filters,
            filter_size=1,
            stride=1,
            padding='SAME',
            num_groups=1,
            act=None,
            name=name + '_linear')
        out = linear_out
        if ifshortcut:
            out = self._shortcut(input=input, data_residual=out)
        return out, depthwise_output

    def _invresi_blocks(self, input, in_c, t, c, n, s, k, name=None):
        """Build inverted residual blocks.
        Args:
            input: Variable, input.
            in_c: int, number of in filters.
            t: float, expansion factor.
            c: int, number of filters.
            n: int, number of layers.
            s: int, stride.
            k: int, filter size.
            name: str, name.
        Returns:
            Variable, layers output.
        """
        first_block, depthwise_output = self._inverted_residual_unit(
            input=input,
            num_in_filter=in_c,
            num_filters=c,
            ifshortcut=False,
            stride=s,
            filter_size=k,
            expansion_factor=t,
            name=name + '_1')

        last_residual_block = first_block
        last_c = c

        for i in range(1, n):
            last_residual_block, depthwise_output = self._inverted_residual_unit(
                input=last_residual_block,
                num_in_filter=last_c,
                num_filters=c,
                ifshortcut=True,
                stride=1,
                filter_size=k,
                expansion_factor=t,
                name=name + '_' + str(i + 1))
        return last_residual_block, depthwise_output


@SEARCHSPACE.register
class MobileNetV1BlockSpace(SearchSpaceBase):
C
update  
ceci3 已提交
284 285 286 287 288 289 290 291
    def __init__(self,
                 input_size,
                 output_size,
                 block_num,
                 block_mask=None,
                 scale=1.0):
        super(MobileNetV1BlockSpace, self).__init__(input_size, output_size,
                                                    block_num, block_mask)
C
ceci3 已提交
292 293 294 295 296

        if self.block_mask == None:
            # use input_size and output_size to compute self.downsample_num
            self.downsample_num = compute_downsample_num(self.input_size,
                                                         self.output_size)
C
ceci3 已提交
297
        if self.block_num != None:
C
update  
ceci3 已提交
298 299
            assert self.downsample_num <= self.block_num, 'downsample numeber must be LESS THAN OR EQUAL TO block_num, but NOW: downsample numeber is {}, block_num is {}'.format(
                self.downsample_num, self.block_num)
C
ceci3 已提交
300 301

        # self.filter_num means channel number
C
update  
ceci3 已提交
302 303 304 305
        self.filter_num = np.array([
            3, 4, 8, 12, 16, 24, 32, 48, 64, 80, 96, 128, 144, 160, 192, 224,
            256, 320, 384, 512, 576, 640, 768, 1024, 1048
        ])
C
ceci3 已提交
306 307 308 309
        self.k_size = np.array([3, 5])
        self.scale = scale

    def init_tokens(self):
C
ceci3 已提交
310
        return get_random_tokens(self.range_table())
C
ceci3 已提交
311 312 313 314 315 316 317 318 319

    def range_table(self):
        range_table_base = []
        if self.block_mask != None:
            for i in range(len(self.block_mask)):
                range_table_base.append(len(self.filter_num))
                range_table_base.append(len(self.filter_num))
                range_table_base.append(len(self.k_size))
        else:
C
ceci3 已提交
320
            for i in range(self.block_num):
C
ceci3 已提交
321 322 323 324 325 326 327 328 329 330
                range_table_base.append(len(self.filter_num))
                range_table_base.append(len(self.filter_num))
                range_table_base.append(len(self.k_size))

        return range_table_base

    def token2arch(self, tokens=None):
        if tokens == None:
            tokens = self.init_tokens()

C
fix  
ceci3 已提交
331
        self.bottleneck_params_list = []
C
ceci3 已提交
332
        if self.block_mask != None:
C
ceci3 已提交
333
            for i in range(len(self.block_mask)):
C
update  
ceci3 已提交
334 335 336 337 338
                self.bottleneck_params_list.append(
                    (self.filter_num[tokens[i * 3]],
                     self.filter_num[tokens[i * 3 + 1]], 2
                     if self.block_mask[i] == 1 else 1,
                     self.k_size[tokens[i * 3 + 2]]))
C
ceci3 已提交
339
        else:
C
ceci3 已提交
340
            repeat_num = int(self.block_num / self.downsample_num)
C
ceci3 已提交
341
            num_minus = self.block_num % self.downsample_num
C
ceci3 已提交
342
            for i in range(self.downsample_num):
C
ceci3 已提交
343
                ### if block_num > downsample_num, add stride=1 block at last (block_num-downsample_num) layers
C
update  
ceci3 已提交
344 345 346 347
                self.bottleneck_params_list.append(
                    (self.filter_num[tokens[i * 3]],
                     self.filter_num[tokens[i * 3 + 1]], 2,
                     self.k_size[tokens[i * 3 + 2]]))
C
ceci3 已提交
348 349 350 351

                ### if block_num / downsample_num > 1, add (block_num / downsample_num) times stride=1 block 
                for k in range(repeat_num - 1):
                    kk = k * self.downsample_num + i
C
update  
ceci3 已提交
352 353 354 355 356
                    self.bottleneck_params_list.append(
                        (self.filter_num[tokens[kk * 3]],
                         self.filter_num[tokens[kk * 3 + 1]], 1,
                         self.k_size[tokens[kk * 3 + 2]]))

C
ceci3 已提交
357
                if self.downsample_num - i <= num_minus:
C
ceci3 已提交
358
                    j = self.downsample_num * (repeat_num - 1) + i
C
update  
ceci3 已提交
359 360 361 362 363 364 365 366 367 368 369
                    self.bottleneck_params_list.append(
                        (self.filter_num[tokens[j * 3]],
                         self.filter_num[tokens[j * 3 + 1]], 1,
                         self.k_size[tokens[j * 3 + 2]]))

            if self.downsample_num == 0 and self.block_num != 0:
                for i in range(len(self.block_num)):
                    self.bottleneck_params_list.append(
                        (self.filter_num[tokens[i * 3]],
                         self.filter_num[tokens[i * 3 + 1]], 1,
                         self.k_size[tokens[i * 3 + 2]]))
C
ceci3 已提交
370

C
update  
ceci3 已提交
371
        def net_arch(input, return_mid_layer=False, return_block=None):
C
ceci3 已提交
372 373
            mid_layer = dict()
            layer_count = 0
C
update  
ceci3 已提交
374

C
ceci3 已提交
375 376
            for i, layer_setting in enumerate(self.bottleneck_params_list):
                filter_num1, filter_num2, stride, kernel_size = layer_setting
C
ceci3 已提交
377 378
                if stride == 2:
                    layer_count += 1
C
update  
ceci3 已提交
379
                if check_points((layer_count - 1), return_block):
C
update  
ceci3 已提交
380
                    mid_layer[layer_count - 1] = input
C
ceci3 已提交
381

C
ceci3 已提交
382 383 384 385 386 387
                input = self._depthwise_separable(
                    input=input,
                    num_filters1=filter_num1,
                    num_filters2=filter_num2,
                    stride=stride,
                    scale=self.scale,
C
ceci3 已提交
388
                    kernel_size=int(kernel_size),
C
ceci3 已提交
389
                    name='mobilenetv1_{}'.format(str(i + 1)))
C
update  
ceci3 已提交
390

C
ceci3 已提交
391 392 393
            if return_mid_layer:
                return input, mid_layer
            else:
C
ceci3 已提交
394
                return input,
C
ceci3 已提交
395 396 397 398 399 400 401 402 403 404 405

        return net_arch

    def _depthwise_separable(self,
                             input,
                             num_filters1,
                             num_filters2,
                             stride,
                             scale,
                             kernel_size,
                             name=None):
C
fix  
ceci3 已提交
406
        num_groups = input.shape[1]
C
ceci3 已提交
407 408 409 410 411 412 413

        s_oc = int(num_filters1 * scale)
        if s_oc > num_groups:
            output_channel = s_oc - (s_oc % num_groups)
        else:
            output_channel = num_groups

C
ceci3 已提交
414 415 416
        depthwise_conv = conv_bn_layer(
            input=input,
            filter_size=kernel_size,
C
ceci3 已提交
417
            num_filters=output_channel,
C
ceci3 已提交
418
            stride=stride,
C
fix  
ceci3 已提交
419
            num_groups=num_groups,
C
ceci3 已提交
420 421 422 423 424 425 426 427 428 429
            use_cudnn=False,
            name=name + '_dw')
        pointwise_conv = conv_bn_layer(
            input=depthwise_conv,
            filter_size=1,
            num_filters=int(num_filters2 * scale),
            stride=1,
            name=name + '_sep')

        return pointwise_conv