ofa.py 12.3 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import numpy as np
from collections import namedtuple
import paddle
import paddle.nn as nn
import paddle.fluid as fluid
from paddle.fluid.dygraph import Conv2D
from .layers import BaseBlock, Block, SuperConv2D, SuperBatchNorm
from .utils.utils import search_idx
from ...common import get_logger

_logger = get_logger(__name__, level=logging.INFO)

__all__ = ['OFA', 'RunConfig', 'DistillConfig']

RunConfig = namedtuple('RunConfig', [
    'train_batch_size', 'eval_batch_size', 'n_epochs', 'save_frequency',
    'eval_frequency', 'init_learning_rate', 'total_images', 'elastic_depth',
    'dynamic_batch_size'
])
RunConfig.__new__.__defaults__ = (None, ) * len(RunConfig._fields)

DistillConfig = namedtuple('DistillConfig', [
    'lambda_distill', 'teacher_model', 'mapping_layers', 'teacher_model_path',
    'distill_fn'
])
DistillConfig.__new__.__defaults__ = (None, ) * len(DistillConfig._fields)


class OFABase(fluid.dygraph.Layer):
    def __init__(self, model):
        super(OFABase, self).__init__()
        self.model = model
        self._layers, self._elastic_task = self.get_layers()

    def get_layers(self):
        layers = dict()
        elastic_task = set()
        for name, sublayer in self.model.named_sublayers():
            if isinstance(sublayer, BaseBlock):
                sublayer.set_supernet(self)
                layers[sublayer.key] = sublayer.candidate_config
                for k in sublayer.candidate_config.keys():
                    elastic_task.add(k)
        return layers, elastic_task

    def forward(self, *inputs, **kwargs):
        raise NotImplementedError

    # NOTE: config means set forward config for layers, used in distill.
    def layers_forward(self, block, *inputs, **kwargs):
        if getattr(self, 'current_config', None) != None:
            assert block.key in self.current_config, 'DONNT have {} layer in config.'.format(
                block.key)
            config = self.current_config[block.key]
        else:
            config = dict()
        logging.debug(self.model, config)

        return block.fn(*inputs, **config)

    @property
    def layers(self):
        return self._layers


class OFA(OFABase):
    def __init__(self,
                 model,
                 run_config,
                 net_config=None,
                 distill_config=None,
                 elastic_order=None,
                 train_full=False):
        super(OFA, self).__init__(model)
        self.net_config = net_config
        self.run_config = run_config
        self.distill_config = distill_config
        self.elastic_order = elastic_order
        self.train_full = train_full
        self.iter_per_epochs = self.run_config.total_images // self.run_config.train_batch_size
        self.iter = 0
        self.dynamic_iter = 0
        self.manual_set_task = False
        self.task_idx = 0
        self._add_teacher = False
        self.netAs_param = []

        for idx in range(len(run_config.n_epochs)):
            assert isinstance(
                run_config.init_learning_rate[idx],
                list), "each candidate in init_learning_rate must be list"
            assert isinstance(run_config.n_epochs[idx],
                              list), "each candidate in n_epochs must be list"

        ### if elastic_order is none, use default order
        if self.elastic_order is not None:
            assert isinstance(self.elastic_order,
                              list), 'elastic_order must be a list'

        if self.elastic_order is None:
            self.elastic_order = []
            # zero, elastic resulotion, write in demo
            # first, elastic kernel size
            if 'kernel_size' in self._elastic_task:
                self.elastic_order.append('kernel_size')

            # second, elastic depth, such as: list(2, 3, 4)
            if getattr(self.run_config, 'elastic_depth', None) != None:
                depth_list = list(set(self.run_config.elastic_depth))
                depth_list.sort()
                self.layers['depth'] = depth_list
                self.elastic_order.append('depth')

            # final, elastic width
            if 'expand_ratio' in self._elastic_task:
                self.elastic_order.append('width')

            if 'channel' in self._elastic_task and 'width' not in self.elastic_order:
                self.elastic_order.append('width')

        assert len(self.run_config.n_epochs) == len(self.elastic_order)
        assert len(self.run_config.n_epochs) == len(
            self.run_config.dynamic_batch_size)
        assert len(self.run_config.n_epochs) == len(
            self.run_config.init_learning_rate)

        ### =================  add distill prepare ======================
        if self.distill_config != None and (
                self.distill_config.lambda_distill != None and
                self.distill_config.lambda_distill > 0):
            self._add_teacher = True
            self._prepare_distill()

        self.model.train()

    def _prepare_distill(self):
        self.Tacts, self.Sacts = {}, {}

        if self.distill_config.teacher_model == None:
            logging.error(
                'If you want to add distill, please input class of teacher model'
            )

        assert isinstance(self.distill_config.teacher_model,
                          paddle.fluid.dygraph.Layer)

        # load teacher parameter
        if self.distill_config.teacher_model_path != None:
            param_state_dict, _ = paddle.load_dygraph(
                self.distill_config.teacher_model_path)
            self.distill_config.teacher_model.set_dict(param_state_dict)

        self.ofa_teacher_model = OFABase(self.distill_config.teacher_model)
        self.ofa_teacher_model.model.eval()

        # add hook if mapping layers is not None
        # if mapping layer is None, return the output of the teacher model,
        # if mapping layer is NOT None, add hook and compute distill loss about mapping layers.
        mapping_layers = self.distill_config.mapping_layers
        if mapping_layers != None:
            self.netAs = []
            for name, sublayer in self.model.named_sublayers():
                if name in mapping_layers:
                    netA = SuperConv2D(
                        sublayer._num_filters,
                        sublayer._num_filters,
                        filter_size=1)
                    self.netAs_param.extend(netA.parameters())
                    self.netAs.append(netA)

            def get_activation(mem, name):
                def get_output_hook(layer, input, output):
                    mem[name] = output

                return get_output_hook

            def add_hook(net, mem, mapping_layers):
                for idx, (n, m) in enumerate(net.named_sublayers()):
                    if n in mapping_layers:
                        m.register_forward_post_hook(get_activation(mem, n))

            add_hook(self.model, self.Sacts, mapping_layers)
            add_hook(self.ofa_teacher_model.model, self.Tacts, mapping_layers)

    def _compute_epochs(self):
        if getattr(self, 'epoch', None) == None:
            epoch = self.iter // self.iter_per_epochs
        else:
            epoch = self.epochs
        return epoch

    def _sample_from_nestdict(self, cands, sample_type, task, phase):
        sample_cands = dict()
        for k, v in cands.items():
            if isinstance(v, dict):
                sample_cands[k] = self._sample_from_nestdict(
                    v, sample_type=sample_type, task=task, phase=phase)
            elif isinstance(v, list) or isinstance(v, set) or isinstance(v,
                                                                         tuple):
                if sample_type == 'largest':
                    sample_cands[k] = v[-1]
                elif sample_type == 'smallest':
                    sample_cands[k] = v[0]
                else:
                    if k not in task:
                        # sort and deduplication in candidate_config
                        # fixed candidate not in task_list
                        sample_cands[k] = v[-1]
                    else:
                        # phase == None -> all candidate; phase == number, append small candidate in each phase
                        # phase only affect last task in current task_list
                        if phase != None and k == task[-1]:
                            start = -(phase + 2)
                        else:
                            start = 0
                        sample_cands[k] = np.random.choice(v[start:])

        return sample_cands

    def _sample_config(self, task, sample_type='random', phase=None):
        config = self._sample_from_nestdict(
            self.layers, sample_type=sample_type, task=task, phase=phase)
        return config

    def set_task(self, task=None, phase=None):
        self.manual_set_task = True
        self.task = task
        self.phase = phase

    def set_epoch(self, epoch):
        self.epoch = epoch

    def _progressive_shrinking(self):
        epoch = self._compute_epochs()
        self.task_idx, phase_idx = search_idx(epoch, self.run_config.n_epochs)
        self.task = self.elastic_order[:self.task_idx + 1]
        if 'width' in self.task:
            ### change width in task to concrete config
            self.task.remove('width')
            if 'expand_ratio' in self._elastic_task:
                self.task.append('expand_ratio')
            if 'channel' in self._elastic_task:
                self.task.append('channel')
        if len(self.run_config.n_epochs[self.task_idx]) == 1:
            phase_idx = None
        return self._sample_config(task=self.task, phase=phase_idx)

    def calc_distill_loss(self):
        losses = []
        assert len(self.netAs) > 0
        for i, netA in enumerate(self.netAs):
            assert isinstance(netA, SuperConv2D)
            n = self.distill_config.mapping_layers[i]
            Tact = self.Tacts[n]
            Sact = self.Sacts[n]
            Sact = netA(Sact, channel=netA._num_filters)
            if self.distill_config.distill_fn == None:
                loss = fluid.layers.mse_loss(Sact, Tact)
            else:
                loss = distill_fn(Sact, Tact)
            losses.append(loss)
        return sum(losses) * self.distill_config.lambda_distill

    ### TODO: complete it
    def search(self, eval_func, condition):
        pass

    ### TODO: complete it
    def export(self, config):
        pass

    def forward(self, *inputs, **kwargs):
        # =====================  teacher process  =====================
        teacher_output = None
        if self._add_teacher:
            teacher_output = self.ofa_teacher_model.model.forward(*inputs,
                                                                  **kwargs)
        # ============================================================

        # ====================   student process  =====================
        self.dynamic_iter += 1
        if self.dynamic_iter == self.run_config.dynamic_batch_size[
                self.task_idx]:
            self.iter += 1
            self.dynamic_iter = 0

        if self.net_config == None:
            if self.train_full == True:
                self.current_config = self._sample_config(
                    task=None, sample_type='largest')
            else:
                if self.manual_set_task == False:
                    self.current_config = self._progressive_shrinking()
                else:
                    self.current_config = self._sample_config(
                        self.task, phase=self.phase)
        else:
            self.current_config = self.net_config

        _logger.debug("Current config is {}".format(self.current_config))
        if 'depth' in self.current_config:
            kwargs['depth'] = int(self.current_config['depth'])

        return self.model.forward(*inputs, **kwargs), teacher_output