# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import numpy as np from collections import namedtuple import paddle import paddle.nn as nn import paddle.fluid as fluid from paddle.fluid.dygraph import Conv2D from .layers import BaseBlock, Block, SuperConv2D, SuperBatchNorm from .utils.utils import search_idx from ...common import get_logger _logger = get_logger(__name__, level=logging.INFO) __all__ = ['OFA', 'RunConfig', 'DistillConfig'] RunConfig = namedtuple('RunConfig', [ 'train_batch_size', 'eval_batch_size', 'n_epochs', 'save_frequency', 'eval_frequency', 'init_learning_rate', 'total_images', 'elastic_depth', 'dynamic_batch_size' ]) RunConfig.__new__.__defaults__ = (None, ) * len(RunConfig._fields) DistillConfig = namedtuple('DistillConfig', [ 'lambda_distill', 'teacher_model', 'mapping_layers', 'teacher_model_path', 'distill_fn' ]) DistillConfig.__new__.__defaults__ = (None, ) * len(DistillConfig._fields) class OFABase(fluid.dygraph.Layer): def __init__(self, model): super(OFABase, self).__init__() self.model = model self._layers, self._elastic_task = self.get_layers() def get_layers(self): layers = dict() elastic_task = set() for name, sublayer in self.model.named_sublayers(): if isinstance(sublayer, BaseBlock): sublayer.set_supernet(self) layers[sublayer.key] = sublayer.candidate_config for k in sublayer.candidate_config.keys(): elastic_task.add(k) return layers, elastic_task def forward(self, *inputs, **kwargs): raise NotImplementedError # NOTE: config means set forward config for layers, used in distill. def layers_forward(self, block, *inputs, **kwargs): if getattr(self, 'current_config', None) != None: assert block.key in self.current_config, 'DONNT have {} layer in config.'.format( block.key) config = self.current_config[block.key] else: config = dict() logging.debug(self.model, config) return block.fn(*inputs, **config) @property def layers(self): return self._layers class OFA(OFABase): def __init__(self, model, run_config, net_config=None, distill_config=None, elastic_order=None, train_full=False): super(OFA, self).__init__(model) self.net_config = net_config self.run_config = run_config self.distill_config = distill_config self.elastic_order = elastic_order self.train_full = train_full self.iter_per_epochs = self.run_config.total_images // self.run_config.train_batch_size self.iter = 0 self.dynamic_iter = 0 self.manual_set_task = False self.task_idx = 0 self._add_teacher = False self.netAs_param = [] for idx in range(len(run_config.n_epochs)): assert isinstance( run_config.init_learning_rate[idx], list), "each candidate in init_learning_rate must be list" assert isinstance(run_config.n_epochs[idx], list), "each candidate in n_epochs must be list" ### if elastic_order is none, use default order if self.elastic_order is not None: assert isinstance(self.elastic_order, list), 'elastic_order must be a list' if self.elastic_order is None: self.elastic_order = [] # zero, elastic resulotion, write in demo # first, elastic kernel size if 'kernel_size' in self._elastic_task: self.elastic_order.append('kernel_size') # second, elastic depth, such as: list(2, 3, 4) if getattr(self.run_config, 'elastic_depth', None) != None: depth_list = list(set(self.run_config.elastic_depth)) depth_list.sort() self.layers['depth'] = depth_list self.elastic_order.append('depth') # final, elastic width if 'expand_ratio' in self._elastic_task: self.elastic_order.append('width') if 'channel' in self._elastic_task and 'width' not in self.elastic_order: self.elastic_order.append('width') assert len(self.run_config.n_epochs) == len(self.elastic_order) assert len(self.run_config.n_epochs) == len( self.run_config.dynamic_batch_size) assert len(self.run_config.n_epochs) == len( self.run_config.init_learning_rate) ### ================= add distill prepare ====================== if self.distill_config != None and ( self.distill_config.lambda_distill != None and self.distill_config.lambda_distill > 0): self._add_teacher = True self._prepare_distill() self.model.train() def _prepare_distill(self): self.Tacts, self.Sacts = {}, {} if self.distill_config.teacher_model == None: logging.error( 'If you want to add distill, please input class of teacher model' ) assert isinstance(self.distill_config.teacher_model, paddle.fluid.dygraph.Layer) # load teacher parameter if self.distill_config.teacher_model_path != None: param_state_dict, _ = paddle.load_dygraph( self.distill_config.teacher_model_path) self.distill_config.teacher_model.set_dict(param_state_dict) self.ofa_teacher_model = OFABase(self.distill_config.teacher_model) self.ofa_teacher_model.model.eval() # add hook if mapping layers is not None # if mapping layer is None, return the output of the teacher model, # if mapping layer is NOT None, add hook and compute distill loss about mapping layers. mapping_layers = self.distill_config.mapping_layers if mapping_layers != None: self.netAs = [] for name, sublayer in self.model.named_sublayers(): if name in mapping_layers: netA = SuperConv2D( sublayer._num_filters, sublayer._num_filters, filter_size=1) self.netAs_param.extend(netA.parameters()) self.netAs.append(netA) def get_activation(mem, name): def get_output_hook(layer, input, output): mem[name] = output return get_output_hook def add_hook(net, mem, mapping_layers): for idx, (n, m) in enumerate(net.named_sublayers()): if n in mapping_layers: m.register_forward_post_hook(get_activation(mem, n)) add_hook(self.model, self.Sacts, mapping_layers) add_hook(self.ofa_teacher_model.model, self.Tacts, mapping_layers) def _compute_epochs(self): if getattr(self, 'epoch', None) == None: epoch = self.iter // self.iter_per_epochs else: epoch = self.epochs return epoch def _sample_from_nestdict(self, cands, sample_type, task, phase): sample_cands = dict() for k, v in cands.items(): if isinstance(v, dict): sample_cands[k] = self._sample_from_nestdict( v, sample_type=sample_type, task=task, phase=phase) elif isinstance(v, list) or isinstance(v, set) or isinstance(v, tuple): if sample_type == 'largest': sample_cands[k] = v[-1] elif sample_type == 'smallest': sample_cands[k] = v[0] else: if k not in task: # sort and deduplication in candidate_config # fixed candidate not in task_list sample_cands[k] = v[-1] else: # phase == None -> all candidate; phase == number, append small candidate in each phase # phase only affect last task in current task_list if phase != None and k == task[-1]: start = -(phase + 2) else: start = 0 sample_cands[k] = np.random.choice(v[start:]) return sample_cands def _sample_config(self, task, sample_type='random', phase=None): config = self._sample_from_nestdict( self.layers, sample_type=sample_type, task=task, phase=phase) return config def set_task(self, task=None, phase=None): self.manual_set_task = True self.task = task self.phase = phase def set_epoch(self, epoch): self.epoch = epoch def _progressive_shrinking(self): epoch = self._compute_epochs() self.task_idx, phase_idx = search_idx(epoch, self.run_config.n_epochs) self.task = self.elastic_order[:self.task_idx + 1] if 'width' in self.task: ### change width in task to concrete config self.task.remove('width') if 'expand_ratio' in self._elastic_task: self.task.append('expand_ratio') if 'channel' in self._elastic_task: self.task.append('channel') if len(self.run_config.n_epochs[self.task_idx]) == 1: phase_idx = None return self._sample_config(task=self.task, phase=phase_idx) def calc_distill_loss(self): losses = [] assert len(self.netAs) > 0 for i, netA in enumerate(self.netAs): assert isinstance(netA, SuperConv2D) n = self.distill_config.mapping_layers[i] Tact = self.Tacts[n] Sact = self.Sacts[n] Sact = netA(Sact, channel=netA._num_filters) if self.distill_config.distill_fn == None: loss = fluid.layers.mse_loss(Sact, Tact) else: loss = distill_fn(Sact, Tact) losses.append(loss) return sum(losses) * self.distill_config.lambda_distill ### TODO: complete it def search(self, eval_func, condition): pass ### TODO: complete it def export(self, config): pass def forward(self, *inputs, **kwargs): # ===================== teacher process ===================== teacher_output = None if self._add_teacher: teacher_output = self.ofa_teacher_model.model.forward(*inputs, **kwargs) # ============================================================ # ==================== student process ===================== self.dynamic_iter += 1 if self.dynamic_iter == self.run_config.dynamic_batch_size[ self.task_idx]: self.iter += 1 self.dynamic_iter = 0 if self.net_config == None: if self.train_full == True: self.current_config = self._sample_config( task=None, sample_type='largest') else: if self.manual_set_task == False: self.current_config = self._progressive_shrinking() else: self.current_config = self._sample_config( self.task, phase=self.phase) else: self.current_config = self.net_config _logger.debug("Current config is {}".format(self.current_config)) if 'depth' in self.current_config: kwargs['depth'] = int(self.current_config['depth']) return self.model.forward(*inputs, **kwargs), teacher_output