single_distiller.py 8.5 KB
Newer Older
Y
yangfukui 已提交
1 2 3 4 5
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
Y
yangfukui 已提交
6
#
Y
yangfukui 已提交
7 8 9 10 11 12 13 14
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
yangfukui 已提交
15 16 17 18 19 20 21 22
import numpy as np
import paddle.fluid as fluid


def merge(teacher_program,
          student_program,
          data_name_map,
          place,
B
Bai Yifan 已提交
23
          scope=None,
Y
yangfukui 已提交
24
          name_prefix='teacher_'):
B
Bai Yifan 已提交
25
    """Merge teacher program into student program and add a uniform prefix to the
Y
yangfukui 已提交
26
    names of all vars in teacher program
B
Bai Yifan 已提交
27

Y
yangfukui 已提交
28 29 30
    Args:
        teacher_program(Program): The input teacher model paddle program 
        student_program(Program): The input student model paddle program
B
Bai Yifan 已提交
31 32 33 34
        data_map_map(dict): Mapping of teacher input interface name and student
                            input interface name, where key of dict is the
                            input name of teacher_program, and value is the
                            input name of student_program.
Y
yangfukui 已提交
35 36
        place(fluid.CPUPlace()|fluid.CUDAPlace(N)): This parameter represents
                                                    paddle run on which device.
B
Bai Yifan 已提交
37 38 39
        scope(Scope): This parameter indicates the variable scope used by
                      the program. If not specified, the default global scope
                      will be used. Default: None
Y
yangfukui 已提交
40
        name_prefix(str): Name prefix added for all vars of the teacher program.
B
Bai Yifan 已提交
41 42 43 44
                          Default: 'teacher_'

    Returns:
        None
Y
yangfukui 已提交
45
    """
B
Bai Yifan 已提交
46 47
    if scope==None:
        scope = fluid.global_scope()
Y
yangfukui 已提交
48
    teacher_program = teacher_program.clone(for_test=True)
Y
yangfukui 已提交
49
    for teacher_var in teacher_program.list_vars():
Y
yangfukui 已提交
50
        skip_rename = False
Y
yangfukui 已提交
51 52 53
        if teacher_var.name != 'fetch' and teacher_var.name != 'feed':
            if teacher_var.name in data_name_map.keys():
                new_name = data_name_map[teacher_var.name]
Y
yangfukui 已提交
54 55
                if new_name == teacher_var.name:
                    skip_rename = True
Y
yangfukui 已提交
56 57
            else:
                new_name = name_prefix + teacher_var.name
Y
yangfukui 已提交
58 59
            if not skip_rename:
                # scope var rename
B
baiyfbupt 已提交
60 61 62
                old_var = scope.var(teacher_var.name).get_tensor()
                renamed_var = scope.var(new_name).get_tensor()
                renamed_var.set(np.array(old_var), place)
63

Y
yangfukui 已提交
64 65 66
                # program var rename
                renamed_var = teacher_program.global_block()._rename_var(
                    teacher_var.name, new_name)
Y
yangfukui 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

    for teacher_var in teacher_program.list_vars():
        if teacher_var.name != 'fetch' and teacher_var.name != 'feed':
            # student program add var
            new_var = student_program.global_block()._clone_variable(
                teacher_var, force_persistable=False)
            new_var.stop_gradient = True

    for block in teacher_program.blocks:
        for op in block.ops:
            if op.type != 'feed' and op.type != 'fetch':
                inputs = {}
                outputs = {}
                attrs = {}
                for input_name in op.input_names:
                    inputs[input_name] = [
                        block.var(in_var_name)
                        for in_var_name in op.input(input_name)
                    ]

                for output_name in op.output_names:
                    outputs[output_name] = [
                        block.var(out_var_name)
                        for out_var_name in op.output(output_name)
                    ]
                for attr_name in op.attr_names:
                    attrs[attr_name] = op.attr(attr_name)
                student_program.global_block().append_op(
                    type=op.type, inputs=inputs, outputs=outputs, attrs=attrs)


98 99 100 101
def fsp_loss(teacher_var1_name,
             teacher_var2_name,
             student_var1_name,
             student_var2_name,
B
Bai Yifan 已提交
102 103 104
             program=None):
    """Combine variables from student model and teacher model by fsp-loss.

Y
yangfukui 已提交
105 106 107 108 109 110 111 112 113
    Args:
        teacher_var1_name(str): The name of teacher_var1.
        teacher_var2_name(str): The name of teacher_var2. Except for the
            second dimension, all other dimensions should
            be consistent with teacher_var1.
        student_var1_name(str): The name of student_var1.
        student_var2_name(str): The name of student_var2. Except for the
            second dimension, all other dimensions should
            be consistent with student_var1.
B
Bai Yifan 已提交
114 115 116 117 118
        program(Program): The input distiller program. If not specified,
                          the default program will be used. Default: None

    Returns:
        Variable: fsp distiller loss.
Y
yangfukui 已提交
119
    """
B
Bai Yifan 已提交
120 121
    if program==None:
        program=fluid.default_main_program()
Y
yangfukui 已提交
122 123 124 125 126 127 128 129 130 131 132
    teacher_var1 = program.global_block().var(teacher_var1_name)
    teacher_var2 = program.global_block().var(teacher_var2_name)
    student_var1 = program.global_block().var(student_var1_name)
    student_var2 = program.global_block().var(student_var2_name)
    teacher_fsp_matrix = fluid.layers.fsp_matrix(teacher_var1, teacher_var2)
    student_fsp_matrix = fluid.layers.fsp_matrix(student_var1, student_var2)
    fsp_loss = fluid.layers.reduce_mean(
        fluid.layers.square(student_fsp_matrix - teacher_fsp_matrix))
    return fsp_loss


133 134
def l2_loss(teacher_var_name,
            student_var_name,
B
Bai Yifan 已提交
135 136 137
            program=None):
    """Combine variables from student model and teacher model by l2-loss.

Y
yangfukui 已提交
138 139 140
    Args:
        teacher_var_name(str): The name of teacher_var.
        student_var_name(str): The name of student_var.
B
Bai Yifan 已提交
141 142 143 144 145
        program(Program): The input distiller program. If not specified,
                          the default program will be used. Default: None

    Returns: 
        Variable: l2 distiller loss.
Y
yangfukui 已提交
146
    """
B
Bai Yifan 已提交
147 148
    if program==None:
        program=fluid.default_main_program()
Y
yangfukui 已提交
149 150 151 152 153 154 155 156 157
    student_var = program.global_block().var(student_var_name)
    teacher_var = program.global_block().var(teacher_var_name)
    l2_loss = fluid.layers.reduce_mean(
        fluid.layers.square(student_var - teacher_var))
    return l2_loss


def soft_label_loss(teacher_var_name,
                    student_var_name,
B
Bai Yifan 已提交
158
                    program=None,
Y
yangfukui 已提交
159 160
                    teacher_temperature=1.,
                    student_temperature=1.):
B
Bai Yifan 已提交
161 162
    """Combine variables from student model and teacher model by soft-label-loss.

Y
yangfukui 已提交
163 164 165
    Args:
        teacher_var_name(str): The name of teacher_var.
        student_var_name(str): The name of student_var.
B
Bai Yifan 已提交
166 167
        program(Program): The input distiller program. If not specified,
                          the default program will be used. Default: None
Y
yangfukui 已提交
168
        teacher_temperature(float): Temperature used to divide
B
Bai Yifan 已提交
169
            teacher_feature_map before softmax. Default: 1.0
Y
yangfukui 已提交
170
        student_temperature(float): Temperature used to divide 
B
Bai Yifan 已提交
171 172 173 174
            student_feature_map before softmax. Default: 1.0

    Returns:
        Variable: l2 distiller loss.
Y
yangfukui 已提交
175
    """
B
Bai Yifan 已提交
176 177
    if program==None:
        program=fluid.default_main_program()
Y
yangfukui 已提交
178 179 180 181 182 183 184 185 186 187 188
    student_var = program.global_block().var(student_var_name)
    teacher_var = program.global_block().var(teacher_var_name)
    student_var = fluid.layers.softmax(student_var / student_temperature)
    teacher_var = fluid.layers.softmax(teacher_var / teacher_temperature)
    teacher_var.stop_gradient = True
    soft_label_loss = fluid.layers.reduce_mean(
        fluid.layers.cross_entropy(
            student_var, teacher_var, soft_label=True))
    return soft_label_loss


B
Bai Yifan 已提交
189 190 191
def loss(loss_func, program=None, **kwargs):
    """Combine variables from student model and teacher model by self defined loss.

Y
yangfukui 已提交
192
    Args:
B
Bai Yifan 已提交
193 194
        program(Program): The input distiller program. If not specified,
                          the default program will be used. Default: None
Y
yangfukui 已提交
195
        loss_func(function): The user self defined loss function. 
B
Bai Yifan 已提交
196 197 198

    Returns: 
        Variable: self defined distiller loss.
Y
yangfukui 已提交
199
    """
B
Bai Yifan 已提交
200 201
    if program==None:
        program=fluid.default_main_program()
Y
yangfukui 已提交
202 203 204 205 206 207 208 209 210
    func_parameters = {}
    for item in kwargs.items():
        if isinstance(item[1], str):
            func_parameters.setdefault(item[0],
                                       program.global_block().var(item[1]))
        else:
            func_parameters.setdefault(item[0], item[1])
    loss = loss_func(**func_parameters)
    return loss