single_distiller.py 7.7 KB
Newer Older
Y
yangfukui 已提交
1 2 3 4 5
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
Y
yangfukui 已提交
6
#
Y
yangfukui 已提交
7 8 9 10 11 12 13 14
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
yangfukui 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
import numpy as np
import paddle.fluid as fluid


def merge(teacher_program,
          student_program,
          data_name_map,
          place,
          teacher_scope=fluid.global_scope(),
          student_scope=fluid.global_scope(),
          name_prefix='teacher_'):
    """
    Merge teacher program into student program and add a uniform prefix to the
    names of all vars in teacher program
    Args:
        teacher_program(Program): The input teacher model paddle program 
        student_program(Program): The input student model paddle program
        data_map_map(dict): Describe the mapping between the teacher var name
                            and the student var name
        place(fluid.CPUPlace()|fluid.CUDAPlace(N)): This parameter represents
                                                    paddle run on which device.
        student_scope(Scope): The input student scope 
        teacher_scope(Scope): The input teacher scope
        name_prefix(str): Name prefix added for all vars of the teacher program.
    Return(Program): Merged program.
    """
    teacher_program = teacher_program.clone(for_test = True)
    for teacher_var in teacher_program.list_vars():
        if teacher_var.name != 'fetch' and teacher_var.name != 'feed':
            if teacher_var.name in data_name_map.keys():
                new_name = data_name_map[teacher_var.name]
            else:
                new_name = name_prefix + teacher_var.name
            # scope var rename
            scope_var = teacher_scope.var(teacher_var.name).get_tensor()
            renamed_scope_var = teacher_scope.var(new_name).get_tensor()
            renamed_scope_var.set(np.array(scope_var), place)

            # program var rename
            renamed_var = teacher_program.global_block()._rename_var(
                teacher_var.name, new_name)

    for teacher_var in teacher_program.list_vars():
        if teacher_var.name != 'fetch' and teacher_var.name != 'feed':
            # student scope add var
            student_scope_var = student_scope.var(teacher_var.name).get_tensor()
            teacher_scope_var = teacher_scope.var(teacher_var.name).get_tensor()
            student_scope_var.set(np.array(teacher_scope_var), place)

            # student program add var
            new_var = student_program.global_block()._clone_variable(
                teacher_var, force_persistable=False)
            new_var.stop_gradient = True

    for block in teacher_program.blocks:
        for op in block.ops:
            if op.type != 'feed' and op.type != 'fetch':
                inputs = {}
                outputs = {}
                attrs = {}
                for input_name in op.input_names:
                    inputs[input_name] = [
                        block.var(in_var_name)
                        for in_var_name in op.input(input_name)
                    ]

                for output_name in op.output_names:
                    outputs[output_name] = [
                        block.var(out_var_name)
                        for out_var_name in op.output(output_name)
                    ]
                for attr_name in op.attr_names:
                    attrs[attr_name] = op.attr(attr_name)
                student_program.global_block().append_op(
                    type=op.type, inputs=inputs, outputs=outputs, attrs=attrs)
    return student_program


def fsp_loss(teacher_var1_name, teacher_var2_name, student_var1_name,
             student_var2_name, program):
    """
    Combine variables from student model and teacher model by fsp-loss.
    Args:
        teacher_var1_name(str): The name of teacher_var1.
        teacher_var2_name(str): The name of teacher_var2. Except for the
            second dimension, all other dimensions should
            be consistent with teacher_var1.
        student_var1_name(str): The name of student_var1.
        student_var2_name(str): The name of student_var2. Except for the
            second dimension, all other dimensions should
            be consistent with student_var1.
        program(Program): The input distiller program. 
    Return(Variable): fsp distiller loss.
    """
    teacher_var1 = program.global_block().var(teacher_var1_name)
    teacher_var2 = program.global_block().var(teacher_var2_name)
    student_var1 = program.global_block().var(student_var1_name)
    student_var2 = program.global_block().var(student_var2_name)
    teacher_fsp_matrix = fluid.layers.fsp_matrix(teacher_var1, teacher_var2)
    student_fsp_matrix = fluid.layers.fsp_matrix(student_var1, student_var2)
    fsp_loss = fluid.layers.reduce_mean(
        fluid.layers.square(student_fsp_matrix - teacher_fsp_matrix))
    return fsp_loss


def l2_loss(teacher_var_name, student_var_name, program):
    """
    Combine variables from student model and teacher model by l2-loss.
    Args:
        teacher_var_name(str): The name of teacher_var.
        student_var_name(str): The name of student_var.
        program(Program): The input distiller program. 
    Return(Variable): l2 distiller loss.
    """
    student_var = program.global_block().var(student_var_name)
    teacher_var = program.global_block().var(teacher_var_name)
    l2_loss = fluid.layers.reduce_mean(
        fluid.layers.square(student_var - teacher_var))
    return l2_loss


def soft_label_loss(teacher_var_name,
                    student_var_name,
                    program,
                    teacher_temperature=1.,
                    student_temperature=1.):
    """
    Combine variables from student model and teacher model by soft-label-loss.
    Args:
        teacher_var_name(str): The name of teacher_var.
        student_var_name(str): The name of student_var.
        program(Program): The input distiller program. 
        teacher_temperature(float): Temperature used to divide
            teacher_feature_map before softmax. default: 1.0
        student_temperature(float): Temperature used to divide 
            student_feature_map before softmax. default: 1.0

    Return(Variable): l2 distiller loss.
    """
    student_var = program.global_block().var(student_var_name)
    teacher_var = program.global_block().var(teacher_var_name)
    student_var = fluid.layers.softmax(student_var / student_temperature)
    teacher_var = fluid.layers.softmax(teacher_var / teacher_temperature)
    teacher_var.stop_gradient = True
    soft_label_loss = fluid.layers.reduce_mean(
        fluid.layers.cross_entropy(
            student_var, teacher_var, soft_label=True))
    return soft_label_loss


def self_defined_loss(program, loss_func, **kwargs):
    """
    Combine variables from student model and teacher model by self defined loss.
    Args:
        program(Program): The input distiller program. 
        loss_func(function): The user self defined loss function. 

    Return(Variable): self defined distiller loss.
    """
    func_parameters = {}
    for item in kwargs.items():
        if isinstance(item[1], str):
            func_parameters.setdefault(item[0],
                                       program.global_block().var(item[1]))
        else:
            func_parameters.setdefault(item[0], item[1])
    loss = loss_func(**func_parameters)
    return loss