post_quant_hpo.py 21.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2021  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""quant post with hyper params search"""

import os
import sys
import math
import time
20
from time import gmtime, strftime
21 22 23 24 25 26 27
import numpy as np
import shutil
import paddle
import paddle.fluid as fluid
import logging
import argparse
import functools
W
whs 已提交
28 29
import shutil
import glob
30 31 32 33 34 35 36 37 38 39 40 41
from scipy.stats import wasserstein_distance

# smac
from ConfigSpace.hyperparameters import CategoricalHyperparameter, \
    UniformFloatHyperparameter, UniformIntegerHyperparameter
from smac.configspace import ConfigurationSpace
from smac.facade.smac_hpo_facade import SMAC4HPO
from smac.scenario.scenario import Scenario

from paddleslim.common import get_logger
from paddleslim.quant import quant_post

G
Guanghua Yu 已提交
42 43
_logger = get_logger(__name__, level=logging.INFO)

44
SMAC_TMP_FILE_PATTERN = "smac3-output_"
W
whs 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57


def remove(path):
    """Remove files or directories matched by regex.
    Args:
        path(str): regular expressions to match the files and directories.
    """
    for p in glob.glob(path):
        if os.path.isdir(p):
            shutil.rmtree(p)
        else:
            os.remove(p)

58

G
Guanghua Yu 已提交
59
class QuantConfig(object):
60 61 62 63 64 65 66
    """quant config"""

    def __init__(self,
                 executor,
                 place,
                 float_infer_model_path,
                 quantize_model_path,
C
ceci3 已提交
67 68 69 70 71
                 algo,
                 hist_percent,
                 bias_correct,
                 batch_size,
                 batch_num,
72 73
                 train_sample_generator=None,
                 eval_sample_generator=None,
C
ceci3 已提交
74 75 76
                 train_dataloader=None,
                 eval_dataloader=None,
                 eval_function=None,
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
                 model_filename=None,
                 params_filename=None,
                 save_model_filename='__model__',
                 save_params_filename='__params__',
                 scope=None,
                 quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"],
                 is_full_quantize=False,
                 weight_bits=8,
                 activation_bits=8,
                 weight_quantize_type='channel_wise_abs_max',
                 optimize_model=False,
                 is_use_cache_file=False,
                 cache_dir="./temp_post_training"):
        """QuantConfig init"""
        self.executor = executor
        self.place = place
        self.float_infer_model_path = float_infer_model_path
        self.quantize_model_path = quantize_model_path
C
ceci3 已提交
95 96 97 98 99
        self.algo = algo,
        self.hist_percent = hist_percent,
        self.bias_correct = bias_correct,
        self.batch_size = batch_size,
        self.batch_num = batch_num,
100 101
        self.train_sample_generator = train_sample_generator
        self.eval_sample_generator = eval_sample_generator
C
ceci3 已提交
102 103 104
        self.train_dataloader = train_dataloader
        self.eval_dataloader = eval_dataloader
        self.eval_function = eval_function
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
        self.model_filename = model_filename
        self.params_filename = params_filename
        self.save_model_filename = save_model_filename
        self.save_params_filename = save_params_filename
        self.scope = scope
        self.quantizable_op_type = quantizable_op_type
        self.is_full_quantize = is_full_quantize
        self.weight_bits = weight_bits
        self.activation_bits = activation_bits
        self.weight_quantize_type = weight_quantize_type
        self.optimize_model = optimize_model
        self.is_use_cache_file = is_use_cache_file
        self.cache_dir = cache_dir


g_quant_config = None
g_quant_model_cache_path = "quant_model_tmp"


C
ceci3 已提交
124 125 126 127 128 129 130 131
def emd_loss_init():
    global g_min_emd_loss
    g_min_emd_loss = float('inf')


emd_loss_init()


132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
def make_feed_dict(feed_target_names, data):
    """construct feed dictionary"""
    feed_dict = {}
    if len(feed_target_names) == 1:
        feed_dict[feed_target_names[0]] = data
    else:
        for i in range(len(feed_target_names)):
            feed_dict[feed_target_names[i]] = data[i]
    return feed_dict


def standardization(data):
    """standardization numpy array"""
    mu = np.mean(data, axis=0)
    sigma = np.std(data, axis=0)
W
whs 已提交
147
    sigma = 1e-13 if sigma == 0. else sigma
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
    return (data - mu) / sigma


def cal_emd_lose(out_float_list, out_quant_list, out_len):
    """caculate earch move distance"""
    emd_sum = 0
    if out_len >= 3:
        for index in range(len(out_float_list)):
            emd_sum += wasserstein_distance(out_float_list[index],
                                            out_quant_list[index])
    else:
        out_float = np.concatenate(out_float_list)
        out_quant = np.concatenate(out_quant_list)
        emd_sum += wasserstein_distance(out_float, out_quant)
    emd_sum /= float(len(out_float_list))
    return emd_sum


def have_invalid_num(np_arr):
    """check have invalid number in numpy array"""
    have_invalid_num = False
    for val in np_arr:
        if math.isnan(val) or math.isinf(val):
            have_invalid_num = True
            break
    return have_invalid_num


def convert_model_out_2_nparr(model_out):
    """convert model output to numpy array"""
    if not isinstance(model_out, list):
        model_out = [model_out]
    out_list = []
    for out in model_out:
        out_list.append(np.array(out))

    out_nparr = np.concatenate(out_list)
    out_nparr = np.squeeze(out_nparr.flatten())
    return out_nparr


def eval_quant_model():
    """Eval quant model accuracy.
       Post quantization does not change the parameter value. Therefore, the closer the output distribution of the quantization model and the float model, the better the accuracy is maintained, 
       which has been verified in classification, detection, and nlp tasks. So the reward here is the earth mover distance between the output of the quantization model and the float model. 
       This distance measurement method is also verified on various tasks, and the stability is better than other distance measurement methods such as mse.
    """
    float_scope = paddle.static.Scope()
    quant_scope = paddle.static.Scope()
    with paddle.static.scope_guard(float_scope):
        [infer_prog_float, feed_target_names_float, fetch_targets_float] = \
            fluid.io.load_inference_model(dirname=g_quant_config.float_infer_model_path, \
            model_filename=g_quant_config.model_filename, \
            params_filename=g_quant_config.params_filename, \
            executor=g_quant_config.executor)

    with paddle.static.scope_guard(quant_scope):
        [infer_prog_quant, feed_target_names_quant, fetch_targets_quant] = \
            fluid.io.load_inference_model(dirname=g_quant_model_cache_path, \
            model_filename=g_quant_config.save_model_filename, \
            params_filename=g_quant_config.save_params_filename, \
            executor=g_quant_config.executor)

    out_float_list = []
    out_quant_list = []
    emd_sum = 0
    out_len_sum = 0
    valid_data_num = 0
    max_eval_data_num = 200
C
ceci3 已提交
217
    if g_quant_config.eval_sample_generator is not None:
C
ceci3 已提交
218
        feed_dict = False
C
ceci3 已提交
219 220
        eval_dataloader = g_quant_config.eval_sample_generator
    else:
C
ceci3 已提交
221
        feed_dict = True
C
ceci3 已提交
222 223
        eval_dataloader = g_quant_config.eval_dataloader
    for i, data in enumerate(eval_dataloader()):
224 225
        with paddle.static.scope_guard(float_scope):
            out_float = g_quant_config.executor.run(infer_prog_float, \
C
ceci3 已提交
226
                fetch_list=fetch_targets_float, feed=data if feed_dict else make_feed_dict(feed_target_names_float, data))
227 228
        with paddle.static.scope_guard(quant_scope):
            out_quant = g_quant_config.executor.run(infer_prog_quant, \
C
ceci3 已提交
229
                fetch_list=fetch_targets_quant, feed=data if feed_dict else make_feed_dict(feed_target_names_quant, data))
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

        out_float = convert_model_out_2_nparr(out_float)
        out_quant = convert_model_out_2_nparr(out_quant)
        if len(out_float.shape) <= 0 or len(out_quant.shape) <= 0:
            continue

        min_len = min(out_float.shape[0], out_quant.shape[0])
        out_float = out_float[:min_len]
        out_quant = out_quant[:min_len]
        out_len_sum += min_len

        if have_invalid_num(out_float) or have_invalid_num(out_quant):
            continue

        try:
            out_float = standardization(out_float)
            out_quant = standardization(out_quant)
        except:
            continue
        out_float_list.append(out_float)
        out_quant_list.append(out_quant)
        valid_data_num += 1

        if valid_data_num >= max_eval_data_num:
            break

    emd_sum = cal_emd_lose(out_float_list, out_quant_list,
                           out_len_sum / float(valid_data_num))
G
Guanghua Yu 已提交
258
    _logger.info("output diff: {}".format(emd_sum))
259 260 261 262 263
    return float(emd_sum)


def quantize(cfg):
    """model quantize job"""
C
ceci3 已提交
264
    algo = cfg["algo"] if 'algo' in cfg else g_quant_config.algo[0][0]
C
ceci3 已提交
265 266
    if g_quant_config.hist_percent[0] is None:
        g_quant_config.hist_percent = [g_quant_config.hist_percent]
C
ceci3 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280
    hist_percent = cfg[
        "hist_percent"] if "hist_percent" in cfg else g_quant_config.hist_percent[
            0][0]
    bias_correct = cfg[
        "bias_correct"] if "bias_correct" in cfg else g_quant_config.bias_correct[
            0][0]
    batch_size = cfg[
        "batch_size"] if "batch_size" in cfg else g_quant_config.batch_size[0][
            0]
    batch_num = cfg[
        "batch_num"] if "batch_num" in cfg else g_quant_config.batch_num[0][0]
    weight_quantize_type = cfg[
        "weight_quantize_type"] if "weight_quantize_type" in cfg else g_quant_config.weight_quantize_type[
            0]
281 282 283 284 285 286 287

    quant_post( \
        executor=g_quant_config.executor, \
        scope=g_quant_config.scope, \
        model_dir=g_quant_config.float_infer_model_path, \
        quantize_model_path=g_quant_model_cache_path, \
        sample_generator=g_quant_config.train_sample_generator, \
C
ceci3 已提交
288
        data_loader=g_quant_config.train_dataloader,
289 290 291 292 293 294
        model_filename=g_quant_config.model_filename, \
        params_filename=g_quant_config.params_filename, \
        save_model_filename=g_quant_config.save_model_filename, \
        save_params_filename=g_quant_config.save_params_filename, \
        quantizable_op_type=g_quant_config.quantizable_op_type, \
        activation_quantize_type="moving_average_abs_max", \
C
ceci3 已提交
295
        weight_quantize_type=weight_quantize_type, \
296 297 298 299 300 301 302
        algo=algo, \
        hist_percent=hist_percent, \
        bias_correction=bias_correct, \
        batch_size=batch_size, \
        batch_nums=batch_num)

    global g_min_emd_loss
C
ceci3 已提交
303
    try:
C
ceci3 已提交
304
        emd_loss = eval_quant_model()
C
ceci3 已提交
305 306 307 308 309 310
    except:
        ### if eval_function is not None, use eval function provided by user.
        float_scope = paddle.static.Scope()
        quant_scope = paddle.static.Scope()
        with paddle.static.scope_guard(float_scope):
            [float_inference_program, feed_target_names, fetch_targets]= fluid.io.load_inference_model( \
C
ceci3 已提交
311
                    dirname=g_quant_config.float_infer_model_path, \
C
ceci3 已提交
312 313 314 315 316 317 318 319 320 321 322 323
                    model_filename=g_quant_config.model_filename, params_filename=g_quant_config.params_filename,
                    executor=g_quant_config.executor)
            float_metric = g_quant_config.eval_function(
                g_quant_config.executor, float_inference_program,
                feed_target_names, fetch_targets)

        with paddle.static.scope_guard(quant_scope):
            [quant_inference_program, feed_target_names, fetch_targets] = fluid.io.load_inference_model( \
                    dirname=g_quant_model_cache_path, \
                    model_filename=g_quant_config.model_filename, params_filename=g_quant_config.params_filename,
                    executor=g_quant_config.executor)
            quant_metric = g_quant_config.eval_function(
C
ceci3 已提交
324 325
                g_quant_config.executor, quant_inference_program,
                feed_target_names, fetch_targets)
C
ceci3 已提交
326 327 328

        emd_loss = float(abs(float_metric - quant_metric)) / float_metric

G
Guanghua Yu 已提交
329
    _logger.info("emd loss: {}".format(emd_loss))
330 331 332 333 334 335 336 337 338
    if emd_loss < g_min_emd_loss:
        g_min_emd_loss = emd_loss
        if os.path.exists(g_quant_config.quantize_model_path):
            shutil.rmtree(g_quant_config.quantize_model_path)
        os.system("cp -r {0} {1}".format(g_quant_model_cache_path,
                                         g_quant_config.quantize_model_path))
    return emd_loss


C
ceci3 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
def quant_post_hpo(
        executor,
        place,
        model_dir,
        quantize_model_path,
        train_sample_generator=None,
        eval_sample_generator=None,
        train_dataloader=None,
        eval_dataloader=None,
        eval_function=None,
        model_filename=None,
        params_filename=None,
        save_model_filename='__model__',
        save_params_filename='__params__',
        scope=None,
        quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"],
        is_full_quantize=False,
        weight_bits=8,
        activation_bits=8,
        weight_quantize_type=['channel_wise_abs_max'],
        algo=["KL", "hist", "avg", "mse"],
        bias_correct=[True, False],
        hist_percent=[0.98, 0.999],  ### uniform sample in list.
        batch_size=[10, 30],  ### uniform sample in list.
        batch_num=[10, 30],  ### uniform sample in list.
        optimize_model=False,
        is_use_cache_file=False,
        cache_dir="./temp_post_training",
        runcount_limit=30):
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
    """
    The function utilizes static post training quantization method to
    quantize the fp32 model. It uses calibrate data to calculate the
    scale factor of quantized variables, and inserts fake quantization
    and dequantization operators to obtain the quantized model.

    Args:
        executor(paddle.static.Executor): The executor to load, run and save the
            quantized model.
        place(paddle.CPUPlace or paddle.CUDAPlace): This parameter represents
            the executor run on which device.
        model_dir(str): The path of fp32 model that will be quantized, and
            the model and params that saved by ``paddle.static.io.save_inference_model``
            are under the path.
        quantize_model_path(str): The path to save quantized model using api
            ``paddle.static.io.save_inference_model``.
        train_sample_generator(Python Generator): The sample generator provides
            calibrate data for DataLoader, and it only returns a sample every time.
        eval_sample_generator(Python Generator): The sample generator provides
            evalution data for DataLoader, and it only returns a sample every time.
        model_filename(str, optional): The name of model file. If parameters
            are saved in separate files, set it as 'None'. Default: 'None'.
        params_filename(str, optional): The name of params file.
                When all parameters are saved in a single file, set it
                as filename. If parameters are saved in separate files,
                set it as 'None'. Default : 'None'.
        save_model_filename(str): The name of model file to save the quantized inference program.  Default: '__model__'.
        save_params_filename(str): The name of file to save all related parameters.
                If it is set None, parameters will be saved in separate files. Default: '__params__'.
        scope(paddle.static.Scope, optional): The scope to run program, use it to load
                        and save variables. If scope is None, will use paddle.static.global_scope().
        quantizable_op_type(list[str], optional): The list of op types
                        that will be quantized. Default: ["conv2d", "depthwise_conv2d",
                        "mul"].
        is_full_quantize(bool): if True, apply quantization to all supported quantizable op type.
                        If False, only apply quantization to the input quantizable_op_type. Default is False.
        weight_bits(int, optional): quantization bit number for weights.
        activation_bits(int): quantization bit number for activation.
        weight_quantize_type(str): quantization type for weights,
                support 'abs_max' and 'channel_wise_abs_max'. Compared to 'abs_max',
                the model accuracy is usually higher when using 'channel_wise_abs_max'.
        optimize_model(bool, optional): If set optimize_model as True, it applies some
                passes to optimize the model before quantization. So far, the place of
                executor must be cpu it supports fusing batch_norm into convs.
        is_use_cache_file(bool): This param is deprecated.
        cache_dir(str): This param is deprecated.
        runcount_limit(int): max. number of model quantization.
    Returns:
        None
    """

    global g_quant_config
    g_quant_config = QuantConfig(
C
ceci3 已提交
421
        executor, place, model_dir, quantize_model_path, algo, hist_percent,
C
ceci3 已提交
422 423
        bias_correct, batch_size, batch_num, train_sample_generator,
        eval_sample_generator, train_dataloader, eval_dataloader, eval_function,
C
ceci3 已提交
424 425 426 427
        model_filename, params_filename, save_model_filename,
        save_params_filename, scope, quantizable_op_type, is_full_quantize,
        weight_bits, activation_bits, weight_quantize_type, optimize_model,
        is_use_cache_file, cache_dir)
428 429
    cs = ConfigurationSpace()

C
ceci3 已提交
430 431 432 433
    hyper_params = []

    if 'hist' in algo:
        hist_percent = UniformFloatHyperparameter(
C
ceci3 已提交
434 435 436 437
            "hist_percent",
            hist_percent[0],
            hist_percent[1],
            default_value=hist_percent[0])
C
ceci3 已提交
438 439 440
        hyper_params.append(hist_percent)

    if len(algo) > 1:
C
ceci3 已提交
441
        algo = CategoricalHyperparameter("algo", algo, default_value=algo[0])
C
ceci3 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
        hyper_params.append(algo)
    else:
        algo = algo[0]

    if len(bias_correct) > 1:
        bias_correct = CategoricalHyperparameter(
            "bias_correct", bias_correct, default_value=bias_correct[0])
        hyper_params.append(bias_correct)
    else:
        bias_correct = bias_correct[0]
    if len(weight_quantize_type) > 1:
        weight_quantize_type = CategoricalHyperparameter("weight_quantize_type", \
            weight_quantize_type, default_value=weight_quantize_type[0])
        hyper_params.append(weight_quantize_type)
    else:
        weight_quantize_type = weight_quantize_type[0]
    if len(batch_size) > 1:
        batch_size = UniformIntegerHyperparameter(
C
ceci3 已提交
460 461 462 463
            "batch_size",
            batch_size[0],
            batch_size[1],
            default_value=batch_size[0])
C
ceci3 已提交
464 465 466 467 468 469 470 471 472
        hyper_params.append(batch_size)
    else:
        batch_size = batch_size[0]

    if len(batch_num) > 1:
        batch_num = UniformIntegerHyperparameter(
            "batch_num", batch_num[0], batch_num[1], default_value=batch_num[0])
        hyper_params.append(batch_num)
    else:
C
ceci3 已提交
473
        batch_num = batch_num[0]
C
ceci3 已提交
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494

    if len(hyper_params) == 0:
        quant_post( \
            executor=g_quant_config.executor, \
            scope=g_quant_config.scope, \
            model_dir=g_quant_config.float_infer_model_path, \
            quantize_model_path=g_quant_model_cache_path, \
            sample_generator=g_quant_config.train_sample_generator, \
            data_loader=g_quant_config.train_dataloader,
            model_filename=g_quant_config.model_filename, \
            params_filename=g_quant_config.params_filename, \
            save_model_filename=g_quant_config.save_model_filename, \
            save_params_filename=g_quant_config.save_params_filename, \
            quantizable_op_type=g_quant_config.quantizable_op_type, \
            activation_quantize_type="moving_average_abs_max", \
            weight_quantize_type=weight_quantize_type, \
            algo=algo, \
            hist_percent=hist_percent, \
            bias_correction=bias_correct, \
            batch_size=batch_size, \
            batch_nums=batch_num)
W
whs 已提交
495
        shutil.rmtree(g_quant_model_cache_path)
C
ceci3 已提交
496 497 498
        return

    cs.add_hyperparameters(hyper_params)
499

500 501 502
    s_datetime = strftime("%Y-%m-%d-%H:%M:%S", gmtime())
    smac_output_dir = SMAC_TMP_FILE_PATTERN + s_datetime

503 504 505 506 507 508 509
    scenario = Scenario({
        "run_obj": "quality",  # we optimize quality (alternative runtime)
        "runcount-limit":
        runcount_limit,  # max. number of function evaluations; for this example set to a low number
        "cs": cs,  # configuration space
        "deterministic": "True",
        "limit_resources": "False",
510 511 512
        "memory_limit":
        4096,  # adapt this to reasonable value for your hardware
        "output_dir": smac_output_dir  # output_dir
513 514 515 516 517 518 519 520
    })
    # To optimize, we pass the function to the SMAC-object
    smac = SMAC4HPO(
        scenario=scenario, rng=np.random.RandomState(42), tae_runner=quantize)

    # Example call of the function with default values
    # It returns: Status, Cost, Runtime, Additional Infos
    def_value = smac.get_tae_runner().run(cs.get_default_configuration(), 1)[1]
G
Guanghua Yu 已提交
521
    _logger.info("Value for default configuration: %.8f" % def_value)
522 523 524 525 526 527 528 529

    # Start optimization
    try:
        incumbent = smac.optimize()
    finally:
        incumbent = smac.solver.incumbent

    inc_value = smac.get_tae_runner().run(incumbent, 1)[1]
G
Guanghua Yu 已提交
530
    _logger.info("Optimized Value: %.8f" % inc_value)
W
whs 已提交
531
    shutil.rmtree(g_quant_model_cache_path)
532
    remove(smac_output_dir)
G
Guanghua Yu 已提交
533
    _logger.info("Quantization completed.")