post_quant_hpo.py 21.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# Copyright (c) 2021  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""quant post with hyper params search"""

import os
import sys
import math
import time
import numpy as np
import shutil
import paddle
import paddle.fluid as fluid
import logging
import argparse
import functools
W
whs 已提交
27 28
import shutil
import glob
29 30 31 32 33 34 35 36 37 38 39 40
from scipy.stats import wasserstein_distance

# smac
from ConfigSpace.hyperparameters import CategoricalHyperparameter, \
    UniformFloatHyperparameter, UniformIntegerHyperparameter
from smac.configspace import ConfigurationSpace
from smac.facade.smac_hpo_facade import SMAC4HPO
from smac.scenario.scenario import Scenario

from paddleslim.common import get_logger
from paddleslim.quant import quant_post

G
Guanghua Yu 已提交
41 42
_logger = get_logger(__name__, level=logging.INFO)

W
whs 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56
SMAC_TMP_FILE_PATTERN = "smac3-output*"


def remove(path):
    """Remove files or directories matched by regex.
    Args:
        path(str): regular expressions to match the files and directories.
    """
    for p in glob.glob(path):
        if os.path.isdir(p):
            shutil.rmtree(p)
        else:
            os.remove(p)

57

G
Guanghua Yu 已提交
58
class QuantConfig(object):
59 60 61 62 63 64 65
    """quant config"""

    def __init__(self,
                 executor,
                 place,
                 float_infer_model_path,
                 quantize_model_path,
C
ceci3 已提交
66 67 68 69 70
                 algo,
                 hist_percent,
                 bias_correct,
                 batch_size,
                 batch_num,
71 72
                 train_sample_generator=None,
                 eval_sample_generator=None,
C
ceci3 已提交
73 74 75
                 train_dataloader=None,
                 eval_dataloader=None,
                 eval_function=None,
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
                 model_filename=None,
                 params_filename=None,
                 save_model_filename='__model__',
                 save_params_filename='__params__',
                 scope=None,
                 quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"],
                 is_full_quantize=False,
                 weight_bits=8,
                 activation_bits=8,
                 weight_quantize_type='channel_wise_abs_max',
                 optimize_model=False,
                 is_use_cache_file=False,
                 cache_dir="./temp_post_training"):
        """QuantConfig init"""
        self.executor = executor
        self.place = place
        self.float_infer_model_path = float_infer_model_path
        self.quantize_model_path = quantize_model_path
C
ceci3 已提交
94 95 96 97 98
        self.algo = algo,
        self.hist_percent = hist_percent,
        self.bias_correct = bias_correct,
        self.batch_size = batch_size,
        self.batch_num = batch_num,
99 100
        self.train_sample_generator = train_sample_generator
        self.eval_sample_generator = eval_sample_generator
C
ceci3 已提交
101 102 103
        self.train_dataloader = train_dataloader
        self.eval_dataloader = eval_dataloader
        self.eval_function = eval_function
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
        self.model_filename = model_filename
        self.params_filename = params_filename
        self.save_model_filename = save_model_filename
        self.save_params_filename = save_params_filename
        self.scope = scope
        self.quantizable_op_type = quantizable_op_type
        self.is_full_quantize = is_full_quantize
        self.weight_bits = weight_bits
        self.activation_bits = activation_bits
        self.weight_quantize_type = weight_quantize_type
        self.optimize_model = optimize_model
        self.is_use_cache_file = is_use_cache_file
        self.cache_dir = cache_dir


g_quant_config = None
g_quant_model_cache_path = "quant_model_tmp"


C
ceci3 已提交
123 124 125 126 127 128 129 130
def emd_loss_init():
    global g_min_emd_loss
    g_min_emd_loss = float('inf')


emd_loss_init()


131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
def make_feed_dict(feed_target_names, data):
    """construct feed dictionary"""
    feed_dict = {}
    if len(feed_target_names) == 1:
        feed_dict[feed_target_names[0]] = data
    else:
        for i in range(len(feed_target_names)):
            feed_dict[feed_target_names[i]] = data[i]
    return feed_dict


def standardization(data):
    """standardization numpy array"""
    mu = np.mean(data, axis=0)
    sigma = np.std(data, axis=0)
W
whs 已提交
146
    sigma = 1e-13 if sigma == 0. else sigma
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
    return (data - mu) / sigma


def cal_emd_lose(out_float_list, out_quant_list, out_len):
    """caculate earch move distance"""
    emd_sum = 0
    if out_len >= 3:
        for index in range(len(out_float_list)):
            emd_sum += wasserstein_distance(out_float_list[index],
                                            out_quant_list[index])
    else:
        out_float = np.concatenate(out_float_list)
        out_quant = np.concatenate(out_quant_list)
        emd_sum += wasserstein_distance(out_float, out_quant)
    emd_sum /= float(len(out_float_list))
    return emd_sum


def have_invalid_num(np_arr):
    """check have invalid number in numpy array"""
    have_invalid_num = False
    for val in np_arr:
        if math.isnan(val) or math.isinf(val):
            have_invalid_num = True
            break
    return have_invalid_num


def convert_model_out_2_nparr(model_out):
    """convert model output to numpy array"""
    if not isinstance(model_out, list):
        model_out = [model_out]
    out_list = []
    for out in model_out:
        out_list.append(np.array(out))

    out_nparr = np.concatenate(out_list)
    out_nparr = np.squeeze(out_nparr.flatten())
    return out_nparr


def eval_quant_model():
    """Eval quant model accuracy.
       Post quantization does not change the parameter value. Therefore, the closer the output distribution of the quantization model and the float model, the better the accuracy is maintained, 
       which has been verified in classification, detection, and nlp tasks. So the reward here is the earth mover distance between the output of the quantization model and the float model. 
       This distance measurement method is also verified on various tasks, and the stability is better than other distance measurement methods such as mse.
    """
    float_scope = paddle.static.Scope()
    quant_scope = paddle.static.Scope()
    with paddle.static.scope_guard(float_scope):
        [infer_prog_float, feed_target_names_float, fetch_targets_float] = \
            fluid.io.load_inference_model(dirname=g_quant_config.float_infer_model_path, \
            model_filename=g_quant_config.model_filename, \
            params_filename=g_quant_config.params_filename, \
            executor=g_quant_config.executor)

    with paddle.static.scope_guard(quant_scope):
        [infer_prog_quant, feed_target_names_quant, fetch_targets_quant] = \
            fluid.io.load_inference_model(dirname=g_quant_model_cache_path, \
            model_filename=g_quant_config.save_model_filename, \
            params_filename=g_quant_config.save_params_filename, \
            executor=g_quant_config.executor)

    out_float_list = []
    out_quant_list = []
    emd_sum = 0
    out_len_sum = 0
    valid_data_num = 0
    max_eval_data_num = 200
C
ceci3 已提交
216
    if g_quant_config.eval_sample_generator is not None:
C
ceci3 已提交
217
        feed_dict = False
C
ceci3 已提交
218 219
        eval_dataloader = g_quant_config.eval_sample_generator
    else:
C
ceci3 已提交
220
        feed_dict = True
C
ceci3 已提交
221 222
        eval_dataloader = g_quant_config.eval_dataloader
    for i, data in enumerate(eval_dataloader()):
223 224
        with paddle.static.scope_guard(float_scope):
            out_float = g_quant_config.executor.run(infer_prog_float, \
C
ceci3 已提交
225
                fetch_list=fetch_targets_float, feed=data if feed_dict else make_feed_dict(feed_target_names_float, data))
226 227
        with paddle.static.scope_guard(quant_scope):
            out_quant = g_quant_config.executor.run(infer_prog_quant, \
C
ceci3 已提交
228
                fetch_list=fetch_targets_quant, feed=data if feed_dict else make_feed_dict(feed_target_names_quant, data))
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

        out_float = convert_model_out_2_nparr(out_float)
        out_quant = convert_model_out_2_nparr(out_quant)
        if len(out_float.shape) <= 0 or len(out_quant.shape) <= 0:
            continue

        min_len = min(out_float.shape[0], out_quant.shape[0])
        out_float = out_float[:min_len]
        out_quant = out_quant[:min_len]
        out_len_sum += min_len

        if have_invalid_num(out_float) or have_invalid_num(out_quant):
            continue

        try:
            out_float = standardization(out_float)
            out_quant = standardization(out_quant)
        except:
            continue
        out_float_list.append(out_float)
        out_quant_list.append(out_quant)
        valid_data_num += 1

        if valid_data_num >= max_eval_data_num:
            break

    emd_sum = cal_emd_lose(out_float_list, out_quant_list,
                           out_len_sum / float(valid_data_num))
G
Guanghua Yu 已提交
257
    _logger.info("output diff: {}".format(emd_sum))
258 259 260 261 262
    return float(emd_sum)


def quantize(cfg):
    """model quantize job"""
C
ceci3 已提交
263
    algo = cfg["algo"] if 'algo' in cfg else g_quant_config.algo[0][0]
C
ceci3 已提交
264 265
    if g_quant_config.hist_percent[0] is None:
        g_quant_config.hist_percent = [g_quant_config.hist_percent]
C
ceci3 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279
    hist_percent = cfg[
        "hist_percent"] if "hist_percent" in cfg else g_quant_config.hist_percent[
            0][0]
    bias_correct = cfg[
        "bias_correct"] if "bias_correct" in cfg else g_quant_config.bias_correct[
            0][0]
    batch_size = cfg[
        "batch_size"] if "batch_size" in cfg else g_quant_config.batch_size[0][
            0]
    batch_num = cfg[
        "batch_num"] if "batch_num" in cfg else g_quant_config.batch_num[0][0]
    weight_quantize_type = cfg[
        "weight_quantize_type"] if "weight_quantize_type" in cfg else g_quant_config.weight_quantize_type[
            0]
280 281 282 283 284 285 286

    quant_post( \
        executor=g_quant_config.executor, \
        scope=g_quant_config.scope, \
        model_dir=g_quant_config.float_infer_model_path, \
        quantize_model_path=g_quant_model_cache_path, \
        sample_generator=g_quant_config.train_sample_generator, \
C
ceci3 已提交
287
        data_loader=g_quant_config.train_dataloader,
288 289 290 291 292 293
        model_filename=g_quant_config.model_filename, \
        params_filename=g_quant_config.params_filename, \
        save_model_filename=g_quant_config.save_model_filename, \
        save_params_filename=g_quant_config.save_params_filename, \
        quantizable_op_type=g_quant_config.quantizable_op_type, \
        activation_quantize_type="moving_average_abs_max", \
C
ceci3 已提交
294
        weight_quantize_type=weight_quantize_type, \
295 296 297 298 299 300 301
        algo=algo, \
        hist_percent=hist_percent, \
        bias_correction=bias_correct, \
        batch_size=batch_size, \
        batch_nums=batch_num)

    global g_min_emd_loss
C
ceci3 已提交
302
    try:
C
ceci3 已提交
303
        emd_loss = eval_quant_model()
C
ceci3 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
    except:
        ### if eval_function is not None, use eval function provided by user.
        float_scope = paddle.static.Scope()
        quant_scope = paddle.static.Scope()
        with paddle.static.scope_guard(float_scope):
            [float_inference_program, feed_target_names, fetch_targets]= fluid.io.load_inference_model( \
                    dirname=g_quant_config.model_filename, \
                    model_filename=g_quant_config.model_filename, params_filename=g_quant_config.params_filename,
                    executor=g_quant_config.executor)
            float_metric = g_quant_config.eval_function(
                g_quant_config.executor, float_inference_program,
                feed_target_names, fetch_targets)

        with paddle.static.scope_guard(quant_scope):
            [quant_inference_program, feed_target_names, fetch_targets] = fluid.io.load_inference_model( \
                    dirname=g_quant_model_cache_path, \
                    model_filename=g_quant_config.model_filename, params_filename=g_quant_config.params_filename,
                    executor=g_quant_config.executor)
            quant_metric = g_quant_config.eval_function(
                g_quant_config.executor, inference_program, feed_target_names,
                fetch_targets)

        emd_loss = float(abs(float_metric - quant_metric)) / float_metric

G
Guanghua Yu 已提交
328
    _logger.info("emd loss: {}".format(emd_loss))
329 330 331 332 333 334 335 336 337
    if emd_loss < g_min_emd_loss:
        g_min_emd_loss = emd_loss
        if os.path.exists(g_quant_config.quantize_model_path):
            shutil.rmtree(g_quant_config.quantize_model_path)
        os.system("cp -r {0} {1}".format(g_quant_model_cache_path,
                                         g_quant_config.quantize_model_path))
    return emd_loss


C
ceci3 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
def quant_post_hpo(
        executor,
        place,
        model_dir,
        quantize_model_path,
        train_sample_generator=None,
        eval_sample_generator=None,
        train_dataloader=None,
        eval_dataloader=None,
        eval_function=None,
        model_filename=None,
        params_filename=None,
        save_model_filename='__model__',
        save_params_filename='__params__',
        scope=None,
        quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"],
        is_full_quantize=False,
        weight_bits=8,
        activation_bits=8,
        weight_quantize_type=['channel_wise_abs_max'],
        algo=["KL", "hist", "avg", "mse"],
        bias_correct=[True, False],
        hist_percent=[0.98, 0.999],  ### uniform sample in list.
        batch_size=[10, 30],  ### uniform sample in list.
        batch_num=[10, 30],  ### uniform sample in list.
        optimize_model=False,
        is_use_cache_file=False,
        cache_dir="./temp_post_training",
        runcount_limit=30):
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
    """
    The function utilizes static post training quantization method to
    quantize the fp32 model. It uses calibrate data to calculate the
    scale factor of quantized variables, and inserts fake quantization
    and dequantization operators to obtain the quantized model.

    Args:
        executor(paddle.static.Executor): The executor to load, run and save the
            quantized model.
        place(paddle.CPUPlace or paddle.CUDAPlace): This parameter represents
            the executor run on which device.
        model_dir(str): The path of fp32 model that will be quantized, and
            the model and params that saved by ``paddle.static.io.save_inference_model``
            are under the path.
        quantize_model_path(str): The path to save quantized model using api
            ``paddle.static.io.save_inference_model``.
        train_sample_generator(Python Generator): The sample generator provides
            calibrate data for DataLoader, and it only returns a sample every time.
        eval_sample_generator(Python Generator): The sample generator provides
            evalution data for DataLoader, and it only returns a sample every time.
        model_filename(str, optional): The name of model file. If parameters
            are saved in separate files, set it as 'None'. Default: 'None'.
        params_filename(str, optional): The name of params file.
                When all parameters are saved in a single file, set it
                as filename. If parameters are saved in separate files,
                set it as 'None'. Default : 'None'.
        save_model_filename(str): The name of model file to save the quantized inference program.  Default: '__model__'.
        save_params_filename(str): The name of file to save all related parameters.
                If it is set None, parameters will be saved in separate files. Default: '__params__'.
        scope(paddle.static.Scope, optional): The scope to run program, use it to load
                        and save variables. If scope is None, will use paddle.static.global_scope().
        quantizable_op_type(list[str], optional): The list of op types
                        that will be quantized. Default: ["conv2d", "depthwise_conv2d",
                        "mul"].
        is_full_quantize(bool): if True, apply quantization to all supported quantizable op type.
                        If False, only apply quantization to the input quantizable_op_type. Default is False.
        weight_bits(int, optional): quantization bit number for weights.
        activation_bits(int): quantization bit number for activation.
        weight_quantize_type(str): quantization type for weights,
                support 'abs_max' and 'channel_wise_abs_max'. Compared to 'abs_max',
                the model accuracy is usually higher when using 'channel_wise_abs_max'.
        optimize_model(bool, optional): If set optimize_model as True, it applies some
                passes to optimize the model before quantization. So far, the place of
                executor must be cpu it supports fusing batch_norm into convs.
        is_use_cache_file(bool): This param is deprecated.
        cache_dir(str): This param is deprecated.
        runcount_limit(int): max. number of model quantization.
    Returns:
        None
    """

    global g_quant_config
    g_quant_config = QuantConfig(
C
ceci3 已提交
420
        executor, place, model_dir, quantize_model_path, algo, hist_percent,
C
ceci3 已提交
421 422
        bias_correct, batch_size, batch_num, train_sample_generator,
        eval_sample_generator, train_dataloader, eval_dataloader, eval_function,
C
ceci3 已提交
423 424 425 426
        model_filename, params_filename, save_model_filename,
        save_params_filename, scope, quantizable_op_type, is_full_quantize,
        weight_bits, activation_bits, weight_quantize_type, optimize_model,
        is_use_cache_file, cache_dir)
427 428
    cs = ConfigurationSpace()

C
ceci3 已提交
429 430 431 432
    hyper_params = []

    if 'hist' in algo:
        hist_percent = UniformFloatHyperparameter(
C
ceci3 已提交
433 434 435 436
            "hist_percent",
            hist_percent[0],
            hist_percent[1],
            default_value=hist_percent[0])
C
ceci3 已提交
437 438 439
        hyper_params.append(hist_percent)

    if len(algo) > 1:
C
ceci3 已提交
440
        algo = CategoricalHyperparameter("algo", algo, default_value=algo[0])
C
ceci3 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
        hyper_params.append(algo)
    else:
        algo = algo[0]

    if len(bias_correct) > 1:
        bias_correct = CategoricalHyperparameter(
            "bias_correct", bias_correct, default_value=bias_correct[0])
        hyper_params.append(bias_correct)
    else:
        bias_correct = bias_correct[0]
    if len(weight_quantize_type) > 1:
        weight_quantize_type = CategoricalHyperparameter("weight_quantize_type", \
            weight_quantize_type, default_value=weight_quantize_type[0])
        hyper_params.append(weight_quantize_type)
    else:
        weight_quantize_type = weight_quantize_type[0]
    if len(batch_size) > 1:
        batch_size = UniformIntegerHyperparameter(
C
ceci3 已提交
459 460 461 462
            "batch_size",
            batch_size[0],
            batch_size[1],
            default_value=batch_size[0])
C
ceci3 已提交
463 464 465 466 467 468 469 470 471
        hyper_params.append(batch_size)
    else:
        batch_size = batch_size[0]

    if len(batch_num) > 1:
        batch_num = UniformIntegerHyperparameter(
            "batch_num", batch_num[0], batch_num[1], default_value=batch_num[0])
        hyper_params.append(batch_num)
    else:
C
ceci3 已提交
472
        batch_num = batch_num[0]
C
ceci3 已提交
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493

    if len(hyper_params) == 0:
        quant_post( \
            executor=g_quant_config.executor, \
            scope=g_quant_config.scope, \
            model_dir=g_quant_config.float_infer_model_path, \
            quantize_model_path=g_quant_model_cache_path, \
            sample_generator=g_quant_config.train_sample_generator, \
            data_loader=g_quant_config.train_dataloader,
            model_filename=g_quant_config.model_filename, \
            params_filename=g_quant_config.params_filename, \
            save_model_filename=g_quant_config.save_model_filename, \
            save_params_filename=g_quant_config.save_params_filename, \
            quantizable_op_type=g_quant_config.quantizable_op_type, \
            activation_quantize_type="moving_average_abs_max", \
            weight_quantize_type=weight_quantize_type, \
            algo=algo, \
            hist_percent=hist_percent, \
            bias_correction=bias_correct, \
            batch_size=batch_size, \
            batch_nums=batch_num)
W
whs 已提交
494
        shutil.rmtree(g_quant_model_cache_path)
C
ceci3 已提交
495 496 497
        return

    cs.add_hyperparameters(hyper_params)
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514

    scenario = Scenario({
        "run_obj": "quality",  # we optimize quality (alternative runtime)
        "runcount-limit":
        runcount_limit,  # max. number of function evaluations; for this example set to a low number
        "cs": cs,  # configuration space
        "deterministic": "True",
        "limit_resources": "False",
        "memory_limit": 4096  # adapt this to reasonable value for your hardware
    })
    # To optimize, we pass the function to the SMAC-object
    smac = SMAC4HPO(
        scenario=scenario, rng=np.random.RandomState(42), tae_runner=quantize)

    # Example call of the function with default values
    # It returns: Status, Cost, Runtime, Additional Infos
    def_value = smac.get_tae_runner().run(cs.get_default_configuration(), 1)[1]
G
Guanghua Yu 已提交
515
    _logger.info("Value for default configuration: %.8f" % def_value)
516 517 518 519 520 521 522 523

    # Start optimization
    try:
        incumbent = smac.optimize()
    finally:
        incumbent = smac.solver.incumbent

    inc_value = smac.get_tae_runner().run(incumbent, 1)[1]
G
Guanghua Yu 已提交
524
    _logger.info("Optimized Value: %.8f" % inc_value)
W
whs 已提交
525 526
    shutil.rmtree(g_quant_model_cache_path)
    remove(SMAC_TMP_FILE_PATTERN)
G
Guanghua Yu 已提交
527
    _logger.info("Quantization completed.")